wasmtime/runtime/
memory.rs

1use crate::Trap;
2use crate::prelude::*;
3use crate::runtime::vm::{self, VMStore};
4use crate::store::{StoreInstanceId, StoreOpaque, StoreResourceLimiter};
5use crate::trampoline::generate_memory_export;
6use crate::{AsContext, AsContextMut, Engine, MemoryType, StoreContext, StoreContextMut};
7use core::cell::UnsafeCell;
8use core::fmt;
9use core::slice;
10use core::time::Duration;
11use wasmtime_environ::DefinedMemoryIndex;
12
13pub use crate::runtime::vm::WaitResult;
14
15/// Error for out of bounds [`Memory`] access.
16#[derive(Debug)]
17#[non_exhaustive]
18pub struct MemoryAccessError {
19    // Keep struct internals private for future extensibility.
20    _private: (),
21}
22
23impl fmt::Display for MemoryAccessError {
24    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
25        write!(f, "out of bounds memory access")
26    }
27}
28
29impl core::error::Error for MemoryAccessError {}
30
31/// A WebAssembly linear memory.
32///
33/// WebAssembly memories represent a contiguous array of bytes that have a size
34/// that is always a multiple of the WebAssembly page size, currently 64
35/// kilobytes.
36///
37/// WebAssembly memory is used for global data (not to be confused with wasm
38/// `global` items), statics in C/C++/Rust, shadow stack memory, etc. Accessing
39/// wasm memory is generally quite fast.
40///
41/// Memories, like other wasm items, are owned by a [`Store`](crate::Store).
42///
43/// # `Memory` and Safety
44///
45/// Linear memory is a lynchpin of safety for WebAssembly. In Wasmtime there are
46/// safe methods of interacting with a [`Memory`]:
47///
48/// * [`Memory::read`]
49/// * [`Memory::write`]
50/// * [`Memory::data`]
51/// * [`Memory::data_mut`]
52///
53/// Note that all of these consider the entire store context as borrowed for the
54/// duration of the call or the duration of the returned slice. This largely
55/// means that while the function is running you'll be unable to borrow anything
56/// else from the store. This includes getting access to the `T` on
57/// [`Store<T>`](crate::Store), but it also means that you can't recursively
58/// call into WebAssembly for instance.
59///
60/// If you'd like to dip your toes into handling [`Memory`] in a more raw
61/// fashion (e.g. by using raw pointers or raw slices), then there's a few
62/// important points to consider when doing so:
63///
64/// * Any recursive calls into WebAssembly can possibly modify any byte of the
65///   entire memory. This means that whenever wasm is called Rust can't have any
66///   long-lived borrows live across the wasm function call. Slices like `&mut
67///   [u8]` will be violated because they're not actually exclusive at that
68///   point, and slices like `&[u8]` are also violated because their contents
69///   may be mutated.
70///
71/// * WebAssembly memories can grow, and growth may change the base pointer.
72///   This means that even holding a raw pointer to memory over a wasm function
73///   call is also incorrect. Anywhere in the function call the base address of
74///   memory may change. Note that growth can also be requested from the
75///   embedding API as well.
76///
77/// As a general rule of thumb it's recommended to stick to the safe methods of
78/// [`Memory`] if you can. It's not advised to use raw pointers or `unsafe`
79/// operations because of how easy it is to accidentally get things wrong.
80///
81/// Some examples of safely interacting with memory are:
82///
83/// ```rust
84/// use wasmtime::{Memory, Store, MemoryAccessError};
85///
86/// // Memory can be read and written safely with the `Memory::read` and
87/// // `Memory::write` methods.
88/// // An error is returned if the copy did not succeed.
89/// fn safe_examples(mem: Memory, store: &mut Store<()>) -> Result<(), MemoryAccessError> {
90///     let offset = 5;
91///     mem.write(&mut *store, offset, b"hello")?;
92///     let mut buffer = [0u8; 5];
93///     mem.read(&store, offset, &mut buffer)?;
94///     assert_eq!(b"hello", &buffer);
95///
96///     // Note that while this is safe care must be taken because the indexing
97///     // here may panic if the memory isn't large enough.
98///     assert_eq!(&mem.data(&store)[offset..offset + 5], b"hello");
99///     mem.data_mut(&mut *store)[offset..offset + 5].copy_from_slice(b"bye!!");
100///
101///     Ok(())
102/// }
103/// ```
104///
105/// It's worth also, however, covering some examples of **incorrect**,
106/// **unsafe** usages of `Memory`. Do not do these things!
107///
108/// ```rust
109/// # use anyhow::Result;
110/// use wasmtime::{Memory, Store};
111///
112/// // NOTE: All code in this function is not safe to execute and may cause
113/// // segfaults/undefined behavior at runtime. Do not copy/paste these examples
114/// // into production code!
115/// unsafe fn unsafe_examples(mem: Memory, store: &mut Store<()>) -> Result<()> {
116///     // First and foremost, any borrow can be invalidated at any time via the
117///     // `Memory::grow` function. This can relocate memory which causes any
118///     // previous pointer to be possibly invalid now.
119///     unsafe {
120///         let pointer: &u8 = &*mem.data_ptr(&store);
121///         mem.grow(&mut *store, 1)?; // invalidates `pointer`!
122///         // println!("{}", *pointer); // FATAL: use-after-free
123///     }
124///
125///     // Note that the use-after-free also applies to slices, whether they're
126///     // slices of bytes or strings.
127///     unsafe {
128///         let mem_slice = std::slice::from_raw_parts(
129///             mem.data_ptr(&store),
130///             mem.data_size(&store),
131///         );
132///         let slice: &[u8] = &mem_slice[0x100..0x102];
133///         mem.grow(&mut *store, 1)?; // invalidates `slice`!
134///         // println!("{:?}", slice); // FATAL: use-after-free
135///     }
136///
137///     // The `Memory` type may be stored in other locations, so if you hand
138///     // off access to the `Store` then those locations may also call
139///     // `Memory::grow` or similar, so it's not enough to just audit code for
140///     // calls to `Memory::grow`.
141///     unsafe {
142///         let pointer: &u8 = &*mem.data_ptr(&store);
143///         some_other_function(store); // may invalidate `pointer` through use of `store`
144///         // println!("{:?}", pointer); // FATAL: maybe a use-after-free
145///     }
146///
147///     // An especially subtle aspect of accessing a wasm instance's memory is
148///     // that you need to be extremely careful about aliasing. Anyone at any
149///     // time can call `data_unchecked()` or `data_unchecked_mut()`, which
150///     // means you can easily have aliasing mutable references:
151///     unsafe {
152///         let ref1: &u8 = &*mem.data_ptr(&store).add(0x100);
153///         let ref2: &mut u8 = &mut *mem.data_ptr(&store).add(0x100);
154///         // *ref2 = *ref1; // FATAL: violates Rust's aliasing rules
155///     }
156///
157///     Ok(())
158/// }
159/// # fn some_other_function(store: &mut Store<()>) {}
160/// ```
161///
162/// Overall there's some general rules of thumb when unsafely working with
163/// `Memory` and getting raw pointers inside of it:
164///
165/// * If you never have a "long lived" pointer into memory, you're likely in the
166///   clear. Care still needs to be taken in threaded scenarios or when/where
167///   data is read, but you'll be shielded from many classes of issues.
168/// * Long-lived pointers must always respect Rust'a aliasing rules. It's ok for
169///   shared borrows to overlap with each other, but mutable borrows must
170///   overlap with nothing.
171/// * Long-lived pointers are only valid if they're not invalidated for their
172///   lifetime. This means that [`Store`](crate::Store) isn't used to reenter
173///   wasm or the memory itself is never grown or otherwise modified/aliased.
174///
175/// At this point it's worth reiterating again that unsafely working with
176/// `Memory` is pretty tricky and not recommended! It's highly recommended to
177/// use the safe methods to interact with [`Memory`] whenever possible.
178///
179/// ## `Memory` Safety and Threads
180///
181/// Currently the `wasmtime` crate does not implement the wasm threads proposal,
182/// but it is planned to do so. It may be interesting to readers to see how this
183/// affects memory safety and what was previously just discussed as well.
184///
185/// Once threads are added into the mix, all of the above rules still apply.
186/// There's an additional consideration that all reads and writes can happen
187/// concurrently, though. This effectively means that any borrow into wasm
188/// memory are virtually never safe to have.
189///
190/// Mutable pointers are fundamentally unsafe to have in a concurrent scenario
191/// in the face of arbitrary wasm code. Only if you dynamically know for sure
192/// that wasm won't access a region would it be safe to construct a mutable
193/// pointer. Additionally even shared pointers are largely unsafe because their
194/// underlying contents may change, so unless `UnsafeCell` in one form or
195/// another is used everywhere there's no safety.
196///
197/// One important point about concurrency is that while [`Memory::grow`] can
198/// happen concurrently it will never relocate the base pointer. Shared
199/// memories must always have a maximum size and they will be preallocated such
200/// that growth will never relocate the base pointer. The current size of the
201/// memory may still change over time though.
202///
203/// Overall the general rule of thumb for shared memories is that you must
204/// atomically read and write everything. Nothing can be borrowed and everything
205/// must be eagerly copied out. This means that [`Memory::data`] and
206/// [`Memory::data_mut`] won't work in the future (they'll probably return an
207/// error) for shared memories when they're implemented. When possible it's
208/// recommended to use [`Memory::read`] and [`Memory::write`] which will still
209/// be provided.
210#[derive(Copy, Clone, Debug)]
211#[repr(C)] // here for the C API
212pub struct Memory {
213    /// The internal store instance that this memory belongs to.
214    instance: StoreInstanceId,
215    /// The index of the memory, within `instance` above, that this memory
216    /// refers to.
217    index: DefinedMemoryIndex,
218}
219
220// Double-check that the C representation in `extern.h` matches our in-Rust
221// representation here in terms of size/alignment/etc.
222const _: () = {
223    #[repr(C)]
224    struct Tmp(u64, u32);
225    #[repr(C)]
226    struct C(Tmp, u32);
227    assert!(core::mem::size_of::<C>() == core::mem::size_of::<Memory>());
228    assert!(core::mem::align_of::<C>() == core::mem::align_of::<Memory>());
229    assert!(core::mem::offset_of!(Memory, instance) == 0);
230};
231
232impl Memory {
233    /// Creates a new WebAssembly memory given the configuration of `ty`.
234    ///
235    /// The `store` argument will be the owner of the returned [`Memory`]. All
236    /// WebAssembly memory is initialized to zero.
237    ///
238    /// # Panics
239    ///
240    /// This function will panic if the [`Store`](`crate::Store`) has a
241    /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`) (see also:
242    /// [`Store::limiter_async`](`crate::Store::limiter_async`)). When
243    /// using an async resource limiter, use [`Memory::new_async`] instead.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// # use wasmtime::*;
249    /// # fn main() -> anyhow::Result<()> {
250    /// let engine = Engine::default();
251    /// let mut store = Store::new(&engine, ());
252    ///
253    /// let memory_ty = MemoryType::new(1, None);
254    /// let memory = Memory::new(&mut store, memory_ty)?;
255    ///
256    /// let module = Module::new(&engine, "(module (memory (import \"\" \"\") 1))")?;
257    /// let instance = Instance::new(&mut store, &module, &[memory.into()])?;
258    /// // ...
259    /// # Ok(())
260    /// # }
261    /// ```
262    pub fn new(mut store: impl AsContextMut, ty: MemoryType) -> Result<Memory> {
263        let (mut limiter, store) = store.as_context_mut().0.resource_limiter_and_store_opaque();
264        vm::one_poll(Self::_new(store, limiter.as_mut(), ty))
265            .expect("must use `new_async` when async resource limiters are in use")
266    }
267
268    /// Async variant of [`Memory::new`]. You must use this variant with
269    /// [`Store`](`crate::Store`)s which have a
270    /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`).
271    ///
272    /// # Panics
273    ///
274    /// This function will panic when used with a non-async
275    /// [`Store`](`crate::Store`).
276    #[cfg(feature = "async")]
277    pub async fn new_async(mut store: impl AsContextMut, ty: MemoryType) -> Result<Memory> {
278        let (mut limiter, store) = store.as_context_mut().0.resource_limiter_and_store_opaque();
279        Self::_new(store, limiter.as_mut(), ty).await
280    }
281
282    /// Helper function for attaching the memory to a "frankenstein" instance
283    async fn _new(
284        store: &mut StoreOpaque,
285        limiter: Option<&mut StoreResourceLimiter<'_>>,
286        ty: MemoryType,
287    ) -> Result<Memory> {
288        if ty.is_shared() {
289            bail!("shared memories must be created through `SharedMemory`")
290        }
291        generate_memory_export(store, limiter, &ty, None).await
292    }
293
294    /// Returns the underlying type of this memory.
295    ///
296    /// # Panics
297    ///
298    /// Panics if this memory doesn't belong to `store`.
299    ///
300    /// # Examples
301    ///
302    /// ```
303    /// # use wasmtime::*;
304    /// # fn main() -> anyhow::Result<()> {
305    /// let engine = Engine::default();
306    /// let mut store = Store::new(&engine, ());
307    /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1))")?;
308    /// let instance = Instance::new(&mut store, &module, &[])?;
309    /// let memory = instance.get_memory(&mut store, "mem").unwrap();
310    /// let ty = memory.ty(&store);
311    /// assert_eq!(ty.minimum(), 1);
312    /// # Ok(())
313    /// # }
314    /// ```
315    pub fn ty(&self, store: impl AsContext) -> MemoryType {
316        let store = store.as_context();
317        MemoryType::from_wasmtime_memory(self.wasmtime_ty(store.0))
318    }
319
320    /// Safely reads memory contents at the given offset into a buffer.
321    ///
322    /// The entire buffer will be filled.
323    ///
324    /// If `offset + buffer.len()` exceed the current memory capacity, then the
325    /// buffer is left untouched and a [`MemoryAccessError`] is returned.
326    ///
327    /// # Panics
328    ///
329    /// Panics if this memory doesn't belong to `store`.
330    pub fn read(
331        &self,
332        store: impl AsContext,
333        offset: usize,
334        buffer: &mut [u8],
335    ) -> Result<(), MemoryAccessError> {
336        let store = store.as_context();
337        let slice = self
338            .data(&store)
339            .get(offset..)
340            .and_then(|s| s.get(..buffer.len()))
341            .ok_or(MemoryAccessError { _private: () })?;
342        buffer.copy_from_slice(slice);
343        Ok(())
344    }
345
346    /// Safely writes contents of a buffer to this memory at the given offset.
347    ///
348    /// If the `offset + buffer.len()` exceeds the current memory capacity, then
349    /// none of the buffer is written to memory and a [`MemoryAccessError`] is
350    /// returned.
351    ///
352    /// # Panics
353    ///
354    /// Panics if this memory doesn't belong to `store`.
355    pub fn write(
356        &self,
357        mut store: impl AsContextMut,
358        offset: usize,
359        buffer: &[u8],
360    ) -> Result<(), MemoryAccessError> {
361        let mut context = store.as_context_mut();
362        self.data_mut(&mut context)
363            .get_mut(offset..)
364            .and_then(|s| s.get_mut(..buffer.len()))
365            .ok_or(MemoryAccessError { _private: () })?
366            .copy_from_slice(buffer);
367        Ok(())
368    }
369
370    /// Returns this memory as a native Rust slice.
371    ///
372    /// Note that this method will consider the entire store context provided as
373    /// borrowed for the duration of the lifetime of the returned slice.
374    ///
375    /// # Panics
376    ///
377    /// Panics if this memory doesn't belong to `store`.
378    pub fn data<'a, T: 'static>(&self, store: impl Into<StoreContext<'a, T>>) -> &'a [u8] {
379        unsafe {
380            let store = store.into();
381            let definition = store[self.instance].memory(self.index);
382            debug_assert!(!self.ty(store).is_shared());
383            slice::from_raw_parts(definition.base.as_ptr(), definition.current_length())
384        }
385    }
386
387    /// Returns this memory as a native Rust mutable slice.
388    ///
389    /// Note that this method will consider the entire store context provided as
390    /// borrowed for the duration of the lifetime of the returned slice.
391    ///
392    /// # Panics
393    ///
394    /// Panics if this memory doesn't belong to `store`.
395    pub fn data_mut<'a, T: 'static>(
396        &self,
397        store: impl Into<StoreContextMut<'a, T>>,
398    ) -> &'a mut [u8] {
399        unsafe {
400            let store = store.into();
401            let definition = store[self.instance].memory(self.index);
402            debug_assert!(!self.ty(store).is_shared());
403            slice::from_raw_parts_mut(definition.base.as_ptr(), definition.current_length())
404        }
405    }
406
407    /// Same as [`Memory::data_mut`], but also returns the `T` from the
408    /// [`StoreContextMut`].
409    ///
410    /// This method can be used when you want to simultaneously work with the
411    /// `T` in the store as well as the memory behind this [`Memory`]. Using
412    /// [`Memory::data_mut`] would consider the entire store borrowed, whereas
413    /// this method allows the Rust compiler to see that the borrow of this
414    /// memory and the borrow of `T` are disjoint.
415    ///
416    /// # Panics
417    ///
418    /// Panics if this memory doesn't belong to `store`.
419    pub fn data_and_store_mut<'a, T: 'static>(
420        &self,
421        store: impl Into<StoreContextMut<'a, T>>,
422    ) -> (&'a mut [u8], &'a mut T) {
423        // Note the unsafety here. Our goal is to simultaneously borrow the
424        // memory and custom data from `store`, and the store it's connected
425        // to. Rust will not let us do that, however, because we must call two
426        // separate methods (both of which borrow the whole `store`) and one of
427        // our borrows is mutable (the custom data).
428        //
429        // This operation, however, is safe because these borrows do not overlap
430        // and in the process of borrowing them mutability doesn't actually
431        // touch anything. This is akin to mutably borrowing two indices in an
432        // array, which is safe so long as the indices are separate.
433        unsafe {
434            let mut store = store.into();
435            let data = &mut *(store.data_mut() as *mut T);
436            (self.data_mut(store), data)
437        }
438    }
439
440    /// Returns the base pointer, in the host's address space, that the memory
441    /// is located at.
442    ///
443    /// For more information and examples see the documentation on the
444    /// [`Memory`] type.
445    ///
446    /// # Panics
447    ///
448    /// Panics if this memory doesn't belong to `store`.
449    pub fn data_ptr(&self, store: impl AsContext) -> *mut u8 {
450        store.as_context()[self.instance]
451            .memory(self.index)
452            .base
453            .as_ptr()
454    }
455
456    /// Returns the byte length of this memory.
457    ///
458    /// WebAssembly memories are made up of a whole number of pages, so the byte
459    /// size returned will always be a multiple of this memory's page size. Note
460    /// that different Wasm memories may have different page sizes. You can get
461    /// a memory's page size via the [`Memory::page_size`] method.
462    ///
463    /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
464    /// `65536`) but [the custom-page-sizes proposal] allows a memory to opt
465    /// into a page size of `1`. Future extensions might allow any power of two
466    /// as a page size.
467    ///
468    /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
469    ///
470    /// For more information and examples see the documentation on the
471    /// [`Memory`] type.
472    ///
473    /// # Panics
474    ///
475    /// Panics if this memory doesn't belong to `store`.
476    pub fn data_size(&self, store: impl AsContext) -> usize {
477        self.internal_data_size(store.as_context().0)
478    }
479
480    pub(crate) fn internal_data_size(&self, store: &StoreOpaque) -> usize {
481        store[self.instance].memory(self.index).current_length()
482    }
483
484    /// Returns the size, in units of pages, of this Wasm memory.
485    ///
486    /// WebAssembly memories are made up of a whole number of pages, so the byte
487    /// size returned will always be a multiple of this memory's page size. Note
488    /// that different Wasm memories may have different page sizes. You can get
489    /// a memory's page size via the [`Memory::page_size`] method.
490    ///
491    /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
492    /// `65536`) but [the custom-page-sizes proposal] allows a memory to opt
493    /// into a page size of `1`. Future extensions might allow any power of two
494    /// as a page size.
495    ///
496    /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
497    ///
498    /// # Panics
499    ///
500    /// Panics if this memory doesn't belong to `store`.
501    pub fn size(&self, store: impl AsContext) -> u64 {
502        self.internal_size(store.as_context().0)
503    }
504
505    pub(crate) fn internal_size(&self, store: &StoreOpaque) -> u64 {
506        let byte_size = self.internal_data_size(store);
507        let page_size = usize::try_from(self._page_size(store)).unwrap();
508        u64::try_from(byte_size / page_size).unwrap()
509    }
510
511    /// Returns the size of a page, in bytes, for this memory.
512    ///
513    /// WebAssembly memories are made up of a whole number of pages, so the byte
514    /// size (as returned by [`Memory::data_size`]) will always be a multiple of
515    /// their page size. Different Wasm memories may have different page sizes.
516    ///
517    /// By default this is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or `65536`)
518    /// but [the custom-page-sizes proposal] allows opting into a page size of
519    /// `1`. Future extensions might allow any power of two as a page size.
520    ///
521    /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
522    pub fn page_size(&self, store: impl AsContext) -> u64 {
523        self._page_size(store.as_context().0)
524    }
525
526    pub(crate) fn _page_size(&self, store: &StoreOpaque) -> u64 {
527        self.wasmtime_ty(store).page_size()
528    }
529
530    /// Returns the log2 of this memory's page size, in bytes.
531    ///
532    /// WebAssembly memories are made up of a whole number of pages, so the byte
533    /// size (as returned by [`Memory::data_size`]) will always be a multiple of
534    /// their page size. Different Wasm memories may have different page sizes.
535    ///
536    /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
537    /// `65536`) but [the custom-page-sizes proposal] allows opting into a page
538    /// size of `1`. Future extensions might allow any power of two as a page
539    /// size.
540    ///
541    /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
542    pub fn page_size_log2(&self, store: impl AsContext) -> u8 {
543        self._page_size_log2(store.as_context().0)
544    }
545
546    pub(crate) fn _page_size_log2(&self, store: &StoreOpaque) -> u8 {
547        self.wasmtime_ty(store).page_size_log2
548    }
549
550    /// Grows this WebAssembly memory by `delta` pages.
551    ///
552    /// This will attempt to add `delta` more pages of memory on to the end of
553    /// this `Memory` instance. If successful this may relocate the memory and
554    /// cause [`Memory::data_ptr`] to return a new value. Additionally any
555    /// unsafely constructed slices into this memory may no longer be valid.
556    ///
557    /// On success returns the number of pages this memory previously had
558    /// before the growth succeeded.
559    ///
560    /// Note that, by default, a WebAssembly memory's page size is 64KiB (aka
561    /// 65536 or 2<sup>16</sup>). The [custom-page-sizes proposal] allows Wasm
562    /// memories to opt into a page size of one byte (and this may be further
563    /// relaxed to any power of two in a future extension).
564    ///
565    /// [custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
566    ///
567    /// # Errors
568    ///
569    /// Returns an error if memory could not be grown, for example if it exceeds
570    /// the maximum limits of this memory. A
571    /// [`ResourceLimiter`](crate::ResourceLimiter) is another example of
572    /// preventing a memory to grow.
573    ///
574    /// # Panics
575    ///
576    /// Panics if this memory doesn't belong to `store`.
577    ///
578    /// This function will panic if the [`Store`](`crate::Store`) has a
579    /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`) (see also:
580    /// [`Store::limiter_async`](`crate::Store::limiter_async`). When using an
581    /// async resource limiter, use [`Memory::grow_async`] instead.
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// # use wasmtime::*;
587    /// # fn main() -> anyhow::Result<()> {
588    /// let engine = Engine::default();
589    /// let mut store = Store::new(&engine, ());
590    /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1 2))")?;
591    /// let instance = Instance::new(&mut store, &module, &[])?;
592    /// let memory = instance.get_memory(&mut store, "mem").unwrap();
593    ///
594    /// assert_eq!(memory.size(&store), 1);
595    /// assert_eq!(memory.grow(&mut store, 1)?, 1);
596    /// assert_eq!(memory.size(&store), 2);
597    /// assert!(memory.grow(&mut store, 1).is_err());
598    /// assert_eq!(memory.size(&store), 2);
599    /// assert_eq!(memory.grow(&mut store, 0)?, 2);
600    /// # Ok(())
601    /// # }
602    /// ```
603    pub fn grow(&self, mut store: impl AsContextMut, delta: u64) -> Result<u64> {
604        let store = store.as_context_mut().0;
605        let (mut limiter, store) = store.resource_limiter_and_store_opaque();
606        vm::one_poll(self._grow(store, limiter.as_mut(), delta))
607            .expect("must use `grow_async` if an async resource limiter is used")
608    }
609
610    /// Async variant of [`Memory::grow`]. Required when using a
611    /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`).
612    ///
613    /// # Panics
614    ///
615    /// This function will panic when used with a non-async
616    /// [`Store`](`crate::Store`).
617    #[cfg(feature = "async")]
618    pub async fn grow_async(&self, mut store: impl AsContextMut, delta: u64) -> Result<u64> {
619        let store = store.as_context_mut();
620        let (mut limiter, store) = store.0.resource_limiter_and_store_opaque();
621        self._grow(store, limiter.as_mut(), delta).await
622    }
623
624    async fn _grow(
625        &self,
626        store: &mut StoreOpaque,
627        limiter: Option<&mut StoreResourceLimiter<'_>>,
628        delta: u64,
629    ) -> Result<u64> {
630        let result = self
631            .instance
632            .get_mut(store)
633            .memory_grow(limiter, self.index, delta)
634            .await?;
635        match result {
636            Some(size) => {
637                let page_size = self.wasmtime_ty(store).page_size();
638                Ok(u64::try_from(size).unwrap() / page_size)
639            }
640            None => bail!("failed to grow memory by `{}`", delta),
641        }
642    }
643
644    pub(crate) fn from_raw(instance: StoreInstanceId, index: DefinedMemoryIndex) -> Memory {
645        Memory { instance, index }
646    }
647
648    pub(crate) fn wasmtime_ty<'a>(&self, store: &'a StoreOpaque) -> &'a wasmtime_environ::Memory {
649        let module = store[self.instance].env_module();
650        let index = module.memory_index(self.index);
651        &module.memories[index]
652    }
653
654    pub(crate) fn vmimport(&self, store: &StoreOpaque) -> crate::runtime::vm::VMMemoryImport {
655        let instance = &store[self.instance];
656        crate::runtime::vm::VMMemoryImport {
657            from: instance.memory_ptr(self.index).into(),
658            vmctx: instance.vmctx().into(),
659            index: self.index,
660        }
661    }
662
663    pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
664        store.id() == self.instance.store_id()
665    }
666
667    /// Get a stable hash key for this memory.
668    ///
669    /// Even if the same underlying memory definition is added to the
670    /// `StoreData` multiple times and becomes multiple `wasmtime::Memory`s,
671    /// this hash key will be consistent across all of these memories.
672    #[cfg(feature = "coredump")]
673    pub(crate) fn hash_key(&self, store: &StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
674        store[self.instance].memory_ptr(self.index).as_ptr().addr()
675    }
676}
677
678/// A linear memory. This trait provides an interface for raw memory buffers
679/// which are used by wasmtime, e.g. inside ['Memory']. Such buffers are in
680/// principle not thread safe. By implementing this trait together with
681/// MemoryCreator, one can supply wasmtime with custom allocated host managed
682/// memory.
683///
684/// # Safety
685///
686/// The memory should be page aligned and a multiple of page size.
687/// To prevent possible silent overflows, the memory should be protected by a
688/// guard page.  Additionally the safety concerns explained in ['Memory'], for
689/// accessing the memory apply here as well.
690///
691/// Note that this is a relatively advanced feature and it is recommended to be
692/// familiar with wasmtime runtime code to use it.
693pub unsafe trait LinearMemory: Send + Sync + 'static {
694    /// Returns the number of allocated bytes which are accessible at this time.
695    fn byte_size(&self) -> usize;
696
697    /// Returns byte capacity of this linear memory's current allocation.
698    ///
699    /// Growth up to this value should not relocate the linear memory base
700    /// pointer.
701    fn byte_capacity(&self) -> usize;
702
703    /// Grows this memory to have the `new_size`, in bytes, specified.
704    ///
705    /// Returns `Err` if memory can't be grown by the specified amount
706    /// of bytes. The error may be downcastable to `std::io::Error`.
707    /// Returns `Ok` if memory was grown successfully.
708    fn grow_to(&mut self, new_size: usize) -> Result<()>;
709
710    /// Return the allocated memory as a mutable pointer to u8.
711    fn as_ptr(&self) -> *mut u8;
712}
713
714/// A memory creator. Can be used to provide a memory creator
715/// to wasmtime which supplies host managed memory.
716///
717/// # Safety
718///
719/// This trait is unsafe, as the memory safety depends on proper implementation
720/// of memory management. Memories created by the MemoryCreator should always be
721/// treated as owned by wasmtime instance, and any modification of them outside
722/// of wasmtime invoked routines is unsafe and may lead to corruption.
723///
724/// Note that this is a relatively advanced feature and it is recommended to be
725/// familiar with Wasmtime runtime code to use it.
726pub unsafe trait MemoryCreator: Send + Sync {
727    /// Create a new `LinearMemory` object from the specified parameters.
728    ///
729    /// The type of memory being created is specified by `ty` which indicates
730    /// both the minimum and maximum size, in wasm pages. The minimum and
731    /// maximum sizes, in bytes, are also specified as parameters to avoid
732    /// integer conversion if desired.
733    ///
734    /// The `reserved_size_in_bytes` value indicates the expected size of the
735    /// reservation that is to be made for this memory. If this value is `None`
736    /// than the implementation is free to allocate memory as it sees fit. If
737    /// the value is `Some`, however, then the implementation is expected to
738    /// reserve that many bytes for the memory's allocation, plus the guard
739    /// size at the end. Note that this reservation need only be a virtual
740    /// memory reservation, physical memory does not need to be allocated
741    /// immediately. In this case `grow` should never move the base pointer and
742    /// the maximum size of `ty` is guaranteed to fit within
743    /// `reserved_size_in_bytes`.
744    ///
745    /// The `guard_size_in_bytes` parameter indicates how many bytes of space,
746    /// after the memory allocation, is expected to be unmapped. JIT code will
747    /// elide bounds checks based on the `guard_size_in_bytes` provided, so for
748    /// JIT code to work correctly the memory returned will need to be properly
749    /// guarded with `guard_size_in_bytes` bytes left unmapped after the base
750    /// allocation.
751    ///
752    /// Note that the `reserved_size_in_bytes` and `guard_size_in_bytes` options
753    /// are tuned from the various [`Config`](crate::Config) methods about
754    /// memory sizes/guards. Additionally these two values are guaranteed to be
755    /// multiples of the system page size.
756    ///
757    /// Memory created from this method should be zero filled.
758    fn new_memory(
759        &self,
760        ty: MemoryType,
761        minimum: usize,
762        maximum: Option<usize>,
763        reserved_size_in_bytes: Option<usize>,
764        guard_size_in_bytes: usize,
765    ) -> Result<Box<dyn LinearMemory>, String>;
766}
767
768/// A constructor for externally-created shared memory.
769///
770/// The [threads proposal] adds the concept of "shared memory" to WebAssembly.
771/// This is much the same as a Wasm linear memory (i.e., [`Memory`]), but can be
772/// used concurrently by multiple agents. Because these agents may execute in
773/// different threads, [`SharedMemory`] must be thread-safe.
774///
775/// When the threads proposal is enabled, there are multiple ways to construct
776/// shared memory:
777///  1. for imported shared memory, e.g., `(import "env" "memory" (memory 1 1
778///     shared))`, the user must supply a [`SharedMemory`] with the
779///     externally-created memory as an import to the instance--e.g.,
780///     `shared_memory.into()`.
781///  2. for private or exported shared memory, e.g., `(export "env" "memory"
782///     (memory 1 1 shared))`, Wasmtime will create the memory internally during
783///     instantiation--access using `Instance::get_shared_memory()`.
784///
785/// [threads proposal]:
786///     https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md
787///
788/// # Examples
789///
790/// ```
791/// # use wasmtime::*;
792/// # fn main() -> anyhow::Result<()> {
793/// let mut config = Config::new();
794/// config.wasm_threads(true);
795/// # if Engine::new(&config).is_err() { return Ok(()); }
796/// let engine = Engine::new(&config)?;
797/// let mut store = Store::new(&engine, ());
798///
799/// let shared_memory = SharedMemory::new(&engine, MemoryType::shared(1, 2))?;
800/// let module = Module::new(&engine, r#"(module (memory (import "" "") 1 2 shared))"#)?;
801/// let instance = Instance::new(&mut store, &module, &[shared_memory.into()])?;
802/// // ...
803/// # Ok(())
804/// # }
805/// ```
806#[derive(Clone)]
807pub struct SharedMemory {
808    vm: crate::runtime::vm::SharedMemory,
809    engine: Engine,
810    page_size_log2: u8,
811}
812
813impl SharedMemory {
814    /// Construct a [`SharedMemory`] by providing both the `minimum` and
815    /// `maximum` number of 64K-sized pages. This call allocates the necessary
816    /// pages on the system.
817    #[cfg(feature = "threads")]
818    pub fn new(engine: &Engine, ty: MemoryType) -> Result<Self> {
819        if !ty.is_shared() {
820            bail!("shared memory must have the `shared` flag enabled on its memory type")
821        }
822        debug_assert!(ty.maximum().is_some());
823
824        let tunables = engine.tunables();
825        let ty = ty.wasmtime_memory();
826        let page_size_log2 = ty.page_size_log2;
827        let memory = crate::runtime::vm::SharedMemory::new(ty, tunables)?;
828
829        Ok(Self {
830            vm: memory,
831            engine: engine.clone(),
832            page_size_log2,
833        })
834    }
835
836    /// Return the type of the shared memory.
837    pub fn ty(&self) -> MemoryType {
838        MemoryType::from_wasmtime_memory(&self.vm.ty())
839    }
840
841    /// Returns the size, in WebAssembly pages, of this wasm memory.
842    pub fn size(&self) -> u64 {
843        let byte_size = u64::try_from(self.data_size()).unwrap();
844        let page_size = u64::from(self.page_size());
845        byte_size / page_size
846    }
847
848    /// Returns the size of a page, in bytes, for this memory.
849    ///
850    /// By default this is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or `65536`)
851    /// but [the custom-page-sizes proposal] allows opting into a page size of
852    /// `1`. Future extensions might allow any power of two as a page size.
853    ///
854    /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
855    pub fn page_size(&self) -> u32 {
856        debug_assert!(self.page_size_log2 == 0 || self.page_size_log2 == 16);
857        1 << self.page_size_log2
858    }
859
860    /// Returns the byte length of this memory.
861    ///
862    /// The returned value will be a multiple of the wasm page size, 64k.
863    ///
864    /// For more information and examples see the documentation on the
865    /// [`Memory`] type.
866    pub fn data_size(&self) -> usize {
867        self.vm.byte_size()
868    }
869
870    /// Return access to the available portion of the shared memory.
871    ///
872    /// The slice returned represents the region of accessible memory at the
873    /// time that this function was called. The contents of the returned slice
874    /// will reflect concurrent modifications happening on other threads.
875    ///
876    /// # Safety
877    ///
878    /// The returned slice is valid for the entire duration of the lifetime of
879    /// this instance of [`SharedMemory`]. The base pointer of a shared memory
880    /// does not change. This [`SharedMemory`] may grow further after this
881    /// function has been called, but the slice returned will not grow.
882    ///
883    /// Concurrent modifications may be happening to the data returned on other
884    /// threads. The `UnsafeCell<u8>` represents that safe access to the
885    /// contents of the slice is not possible through normal loads and stores.
886    ///
887    /// The memory returned must be accessed safely through the `Atomic*` types
888    /// in the [`std::sync::atomic`] module. Casting to those types must
889    /// currently be done unsafely.
890    pub fn data(&self) -> &[UnsafeCell<u8>] {
891        unsafe {
892            let definition = self.vm.vmmemory_ptr().as_ref();
893            slice::from_raw_parts(definition.base.as_ptr().cast(), definition.current_length())
894        }
895    }
896
897    /// Grows this WebAssembly memory by `delta` pages.
898    ///
899    /// This will attempt to add `delta` more pages of memory on to the end of
900    /// this `Memory` instance. If successful this may relocate the memory and
901    /// cause [`Memory::data_ptr`] to return a new value. Additionally any
902    /// unsafely constructed slices into this memory may no longer be valid.
903    ///
904    /// On success returns the number of pages this memory previously had
905    /// before the growth succeeded.
906    ///
907    /// # Errors
908    ///
909    /// Returns an error if memory could not be grown, for example if it exceeds
910    /// the maximum limits of this memory. A
911    /// [`ResourceLimiter`](crate::ResourceLimiter) is another example of
912    /// preventing a memory to grow.
913    pub fn grow(&self, delta: u64) -> Result<u64> {
914        match self.vm.grow(delta)? {
915            Some((old_size, _new_size)) => {
916                // For shared memory, the `VMMemoryDefinition` is updated inside
917                // the locked region.
918                Ok(u64::try_from(old_size).unwrap() / u64::from(self.page_size()))
919            }
920            None => bail!("failed to grow memory by `{}`", delta),
921        }
922    }
923
924    /// Equivalent of the WebAssembly `memory.atomic.notify` instruction for
925    /// this shared memory.
926    ///
927    /// This method allows embedders to notify threads blocked on the specified
928    /// `addr`, an index into wasm linear memory. Threads could include
929    /// wasm threads blocked on a `memory.atomic.wait*` instruction or embedder
930    /// threads blocked on [`SharedMemory::atomic_wait32`], for example.
931    ///
932    /// The `count` argument is the number of threads to wake up.
933    ///
934    /// This function returns the number of threads awoken.
935    ///
936    /// # Errors
937    ///
938    /// This function will return an error if `addr` is not within bounds or
939    /// not aligned to a 4-byte boundary.
940    pub fn atomic_notify(&self, addr: u64, count: u32) -> Result<u32, Trap> {
941        self.vm.atomic_notify(addr, count)
942    }
943
944    /// Equivalent of the WebAssembly `memory.atomic.wait32` instruction for
945    /// this shared memory.
946    ///
947    /// This method allows embedders to block the current thread until notified
948    /// via the `memory.atomic.notify` instruction or the
949    /// [`SharedMemory::atomic_notify`] method, enabling synchronization with
950    /// the wasm guest as desired.
951    ///
952    /// The `expected` argument is the expected 32-bit value to be stored at
953    /// the byte address `addr` specified. The `addr` specified is an index
954    /// into this linear memory.
955    ///
956    /// The optional `timeout` argument is the maximum amount of time to block
957    /// the current thread. If not specified the thread may sleep indefinitely.
958    ///
959    /// This function returns one of three possible values:
960    ///
961    /// * `WaitResult::Ok` - this function, loaded the value at `addr`, found
962    ///   it was equal to `expected`, and then blocked (all as one atomic
963    ///   operation). The thread was then awoken with a `memory.atomic.notify`
964    ///   instruction or the [`SharedMemory::atomic_notify`] method.
965    /// * `WaitResult::Mismatch` - the value at `addr` was loaded but was not
966    ///   equal to `expected` so the thread did not block and immediately
967    ///   returned.
968    /// * `WaitResult::TimedOut` - all the steps of `Ok` happened, except this
969    ///   thread was woken up due to a timeout.
970    ///
971    /// This function will not return due to spurious wakeups.
972    ///
973    /// # Errors
974    ///
975    /// This function will return an error if `addr` is not within bounds or
976    /// not aligned to a 4-byte boundary.
977    pub fn atomic_wait32(
978        &self,
979        addr: u64,
980        expected: u32,
981        timeout: Option<Duration>,
982    ) -> Result<WaitResult, Trap> {
983        self.vm.atomic_wait32(addr, expected, timeout)
984    }
985
986    /// Equivalent of the WebAssembly `memory.atomic.wait64` instruction for
987    /// this shared memory.
988    ///
989    /// For more information see [`SharedMemory::atomic_wait32`].
990    ///
991    /// # Errors
992    ///
993    /// Returns the same error as [`SharedMemory::atomic_wait32`] except that
994    /// the specified address must be 8-byte aligned instead of 4-byte aligned.
995    pub fn atomic_wait64(
996        &self,
997        addr: u64,
998        expected: u64,
999        timeout: Option<Duration>,
1000    ) -> Result<WaitResult, Trap> {
1001        self.vm.atomic_wait64(addr, expected, timeout)
1002    }
1003
1004    /// Return a reference to the [`Engine`] used to configure the shared
1005    /// memory.
1006    pub(crate) fn engine(&self) -> &Engine {
1007        &self.engine
1008    }
1009
1010    /// Construct a single-memory instance to provide a way to import
1011    /// [`SharedMemory`] into other modules.
1012    pub(crate) fn vmimport(&self, store: &mut StoreOpaque) -> crate::runtime::vm::VMMemoryImport {
1013        // Note `vm::assert_ready` shouldn't panic here because this isn't
1014        // actually allocating any new memory (also no limiter), so resource
1015        // limiting shouldn't kick in.
1016        vm::assert_ready(generate_memory_export(
1017            store,
1018            None,
1019            &self.ty(),
1020            Some(&self.vm),
1021        ))
1022        .unwrap()
1023        .vmimport(store)
1024    }
1025
1026    /// Create a [`SharedMemory`] from an [`ExportMemory`] definition. This
1027    /// function is available to handle the case in which a Wasm module exports
1028    /// shared memory and the user wants host-side access to it.
1029    pub(crate) fn from_memory(mem: Memory, store: &StoreOpaque) -> Self {
1030        #![cfg_attr(
1031            not(feature = "threads"),
1032            expect(
1033                unused_variables,
1034                unreachable_code,
1035                reason = "definitions cfg'd to dummy",
1036            )
1037        )]
1038
1039        let instance = mem.instance.get(store);
1040        let memory = instance.get_defined_memory(mem.index);
1041        let module = instance.env_module();
1042        let page_size_log2 = module.memories[module.memory_index(mem.index)].page_size_log2;
1043        match memory.as_shared_memory() {
1044            Some(mem) => Self {
1045                vm: mem.clone(),
1046                engine: store.engine().clone(),
1047                page_size_log2,
1048            },
1049            None => panic!("unable to convert from a shared memory"),
1050        }
1051    }
1052}
1053
1054impl fmt::Debug for SharedMemory {
1055    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1056        f.debug_struct("SharedMemory").finish_non_exhaustive()
1057    }
1058}
1059
1060#[cfg(test)]
1061mod tests {
1062    use crate::*;
1063
1064    // Assert that creating a memory via `Memory::new` respects the limits/tunables
1065    // in `Config`.
1066    #[test]
1067    fn respect_tunables() {
1068        let mut cfg = Config::new();
1069        cfg.memory_reservation(0).memory_guard_size(0);
1070        let mut store = Store::new(&Engine::new(&cfg).unwrap(), ());
1071        let ty = MemoryType::new(1, None);
1072        let mem = Memory::new(&mut store, ty).unwrap();
1073        let store = store.as_context();
1074        let tunables = store.engine().tunables();
1075        assert_eq!(tunables.memory_guard_size, 0);
1076        assert!(
1077            !mem.wasmtime_ty(store.0)
1078                .can_elide_bounds_check(tunables, 12)
1079        );
1080    }
1081
1082    #[test]
1083    fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
1084        let mut store = Store::<()>::default();
1085        let module = Module::new(
1086            store.engine(),
1087            r#"
1088                (module
1089                    (memory (export "m") 1 1)
1090                )
1091            "#,
1092        )?;
1093        let instance = Instance::new(&mut store, &module, &[])?;
1094
1095        // Each time we `get_memory`, we call `Memory::from_wasmtime` which adds
1096        // a new entry to `StoreData`, so `g1` and `g2` will have different
1097        // indices into `StoreData`.
1098        let m1 = instance.get_memory(&mut store, "m").unwrap();
1099        let m2 = instance.get_memory(&mut store, "m").unwrap();
1100
1101        // That said, they really point to the same memory.
1102        assert_eq!(m1.data(&store)[0], 0);
1103        assert_eq!(m2.data(&store)[0], 0);
1104        m1.data_mut(&mut store)[0] = 42;
1105        assert_eq!(m1.data(&mut store)[0], 42);
1106        assert_eq!(m2.data(&mut store)[0], 42);
1107
1108        // And therefore their hash keys are the same.
1109        assert!(m1.hash_key(&store.as_context().0) == m2.hash_key(&store.as_context().0));
1110
1111        // But the hash keys are different from different memories.
1112        let instance2 = Instance::new(&mut store, &module, &[])?;
1113        let m3 = instance2.get_memory(&mut store, "m").unwrap();
1114        assert!(m1.hash_key(&store.as_context().0) != m3.hash_key(&store.as_context().0));
1115
1116        Ok(())
1117    }
1118}