wasmtime/runtime/memory.rs
1use crate::Trap;
2use crate::prelude::*;
3use crate::runtime::vm::{self, VMStore};
4use crate::store::{StoreInstanceId, StoreOpaque, StoreResourceLimiter};
5use crate::trampoline::generate_memory_export;
6use crate::{AsContext, AsContextMut, Engine, MemoryType, StoreContext, StoreContextMut};
7use core::cell::UnsafeCell;
8use core::fmt;
9use core::slice;
10use core::time::Duration;
11use wasmtime_environ::DefinedMemoryIndex;
12
13pub use crate::runtime::vm::WaitResult;
14
15/// Error for out of bounds [`Memory`] access.
16#[derive(Debug)]
17#[non_exhaustive]
18pub struct MemoryAccessError {
19 // Keep struct internals private for future extensibility.
20 _private: (),
21}
22
23impl fmt::Display for MemoryAccessError {
24 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
25 write!(f, "out of bounds memory access")
26 }
27}
28
29impl core::error::Error for MemoryAccessError {}
30
31/// A WebAssembly linear memory.
32///
33/// WebAssembly memories represent a contiguous array of bytes that have a size
34/// that is always a multiple of the WebAssembly page size, currently 64
35/// kilobytes.
36///
37/// WebAssembly memory is used for global data (not to be confused with wasm
38/// `global` items), statics in C/C++/Rust, shadow stack memory, etc. Accessing
39/// wasm memory is generally quite fast.
40///
41/// Memories, like other wasm items, are owned by a [`Store`](crate::Store).
42///
43/// # `Memory` and Safety
44///
45/// Linear memory is a lynchpin of safety for WebAssembly. In Wasmtime there are
46/// safe methods of interacting with a [`Memory`]:
47///
48/// * [`Memory::read`]
49/// * [`Memory::write`]
50/// * [`Memory::data`]
51/// * [`Memory::data_mut`]
52///
53/// Note that all of these consider the entire store context as borrowed for the
54/// duration of the call or the duration of the returned slice. This largely
55/// means that while the function is running you'll be unable to borrow anything
56/// else from the store. This includes getting access to the `T` on
57/// [`Store<T>`](crate::Store), but it also means that you can't recursively
58/// call into WebAssembly for instance.
59///
60/// If you'd like to dip your toes into handling [`Memory`] in a more raw
61/// fashion (e.g. by using raw pointers or raw slices), then there's a few
62/// important points to consider when doing so:
63///
64/// * Any recursive calls into WebAssembly can possibly modify any byte of the
65/// entire memory. This means that whenever wasm is called Rust can't have any
66/// long-lived borrows live across the wasm function call. Slices like `&mut
67/// [u8]` will be violated because they're not actually exclusive at that
68/// point, and slices like `&[u8]` are also violated because their contents
69/// may be mutated.
70///
71/// * WebAssembly memories can grow, and growth may change the base pointer.
72/// This means that even holding a raw pointer to memory over a wasm function
73/// call is also incorrect. Anywhere in the function call the base address of
74/// memory may change. Note that growth can also be requested from the
75/// embedding API as well.
76///
77/// As a general rule of thumb it's recommended to stick to the safe methods of
78/// [`Memory`] if you can. It's not advised to use raw pointers or `unsafe`
79/// operations because of how easy it is to accidentally get things wrong.
80///
81/// Some examples of safely interacting with memory are:
82///
83/// ```rust
84/// use wasmtime::{Memory, Store, MemoryAccessError};
85///
86/// // Memory can be read and written safely with the `Memory::read` and
87/// // `Memory::write` methods.
88/// // An error is returned if the copy did not succeed.
89/// fn safe_examples(mem: Memory, store: &mut Store<()>) -> Result<(), MemoryAccessError> {
90/// let offset = 5;
91/// mem.write(&mut *store, offset, b"hello")?;
92/// let mut buffer = [0u8; 5];
93/// mem.read(&store, offset, &mut buffer)?;
94/// assert_eq!(b"hello", &buffer);
95///
96/// // Note that while this is safe care must be taken because the indexing
97/// // here may panic if the memory isn't large enough.
98/// assert_eq!(&mem.data(&store)[offset..offset + 5], b"hello");
99/// mem.data_mut(&mut *store)[offset..offset + 5].copy_from_slice(b"bye!!");
100///
101/// Ok(())
102/// }
103/// ```
104///
105/// It's worth also, however, covering some examples of **incorrect**,
106/// **unsafe** usages of `Memory`. Do not do these things!
107///
108/// ```rust
109/// # use anyhow::Result;
110/// use wasmtime::{Memory, Store};
111///
112/// // NOTE: All code in this function is not safe to execute and may cause
113/// // segfaults/undefined behavior at runtime. Do not copy/paste these examples
114/// // into production code!
115/// unsafe fn unsafe_examples(mem: Memory, store: &mut Store<()>) -> Result<()> {
116/// // First and foremost, any borrow can be invalidated at any time via the
117/// // `Memory::grow` function. This can relocate memory which causes any
118/// // previous pointer to be possibly invalid now.
119/// unsafe {
120/// let pointer: &u8 = &*mem.data_ptr(&store);
121/// mem.grow(&mut *store, 1)?; // invalidates `pointer`!
122/// // println!("{}", *pointer); // FATAL: use-after-free
123/// }
124///
125/// // Note that the use-after-free also applies to slices, whether they're
126/// // slices of bytes or strings.
127/// unsafe {
128/// let mem_slice = std::slice::from_raw_parts(
129/// mem.data_ptr(&store),
130/// mem.data_size(&store),
131/// );
132/// let slice: &[u8] = &mem_slice[0x100..0x102];
133/// mem.grow(&mut *store, 1)?; // invalidates `slice`!
134/// // println!("{:?}", slice); // FATAL: use-after-free
135/// }
136///
137/// // The `Memory` type may be stored in other locations, so if you hand
138/// // off access to the `Store` then those locations may also call
139/// // `Memory::grow` or similar, so it's not enough to just audit code for
140/// // calls to `Memory::grow`.
141/// unsafe {
142/// let pointer: &u8 = &*mem.data_ptr(&store);
143/// some_other_function(store); // may invalidate `pointer` through use of `store`
144/// // println!("{:?}", pointer); // FATAL: maybe a use-after-free
145/// }
146///
147/// // An especially subtle aspect of accessing a wasm instance's memory is
148/// // that you need to be extremely careful about aliasing. Anyone at any
149/// // time can call `data_unchecked()` or `data_unchecked_mut()`, which
150/// // means you can easily have aliasing mutable references:
151/// unsafe {
152/// let ref1: &u8 = &*mem.data_ptr(&store).add(0x100);
153/// let ref2: &mut u8 = &mut *mem.data_ptr(&store).add(0x100);
154/// // *ref2 = *ref1; // FATAL: violates Rust's aliasing rules
155/// }
156///
157/// Ok(())
158/// }
159/// # fn some_other_function(store: &mut Store<()>) {}
160/// ```
161///
162/// Overall there's some general rules of thumb when unsafely working with
163/// `Memory` and getting raw pointers inside of it:
164///
165/// * If you never have a "long lived" pointer into memory, you're likely in the
166/// clear. Care still needs to be taken in threaded scenarios or when/where
167/// data is read, but you'll be shielded from many classes of issues.
168/// * Long-lived pointers must always respect Rust'a aliasing rules. It's ok for
169/// shared borrows to overlap with each other, but mutable borrows must
170/// overlap with nothing.
171/// * Long-lived pointers are only valid if they're not invalidated for their
172/// lifetime. This means that [`Store`](crate::Store) isn't used to reenter
173/// wasm or the memory itself is never grown or otherwise modified/aliased.
174///
175/// At this point it's worth reiterating again that unsafely working with
176/// `Memory` is pretty tricky and not recommended! It's highly recommended to
177/// use the safe methods to interact with [`Memory`] whenever possible.
178///
179/// ## `Memory` Safety and Threads
180///
181/// Currently the `wasmtime` crate does not implement the wasm threads proposal,
182/// but it is planned to do so. It may be interesting to readers to see how this
183/// affects memory safety and what was previously just discussed as well.
184///
185/// Once threads are added into the mix, all of the above rules still apply.
186/// There's an additional consideration that all reads and writes can happen
187/// concurrently, though. This effectively means that any borrow into wasm
188/// memory are virtually never safe to have.
189///
190/// Mutable pointers are fundamentally unsafe to have in a concurrent scenario
191/// in the face of arbitrary wasm code. Only if you dynamically know for sure
192/// that wasm won't access a region would it be safe to construct a mutable
193/// pointer. Additionally even shared pointers are largely unsafe because their
194/// underlying contents may change, so unless `UnsafeCell` in one form or
195/// another is used everywhere there's no safety.
196///
197/// One important point about concurrency is that while [`Memory::grow`] can
198/// happen concurrently it will never relocate the base pointer. Shared
199/// memories must always have a maximum size and they will be preallocated such
200/// that growth will never relocate the base pointer. The current size of the
201/// memory may still change over time though.
202///
203/// Overall the general rule of thumb for shared memories is that you must
204/// atomically read and write everything. Nothing can be borrowed and everything
205/// must be eagerly copied out. This means that [`Memory::data`] and
206/// [`Memory::data_mut`] won't work in the future (they'll probably return an
207/// error) for shared memories when they're implemented. When possible it's
208/// recommended to use [`Memory::read`] and [`Memory::write`] which will still
209/// be provided.
210#[derive(Copy, Clone, Debug)]
211#[repr(C)] // here for the C API
212pub struct Memory {
213 /// The internal store instance that this memory belongs to.
214 instance: StoreInstanceId,
215 /// The index of the memory, within `instance` above, that this memory
216 /// refers to.
217 index: DefinedMemoryIndex,
218}
219
220// Double-check that the C representation in `extern.h` matches our in-Rust
221// representation here in terms of size/alignment/etc.
222const _: () = {
223 #[repr(C)]
224 struct Tmp(u64, u32);
225 #[repr(C)]
226 struct C(Tmp, u32);
227 assert!(core::mem::size_of::<C>() == core::mem::size_of::<Memory>());
228 assert!(core::mem::align_of::<C>() == core::mem::align_of::<Memory>());
229 assert!(core::mem::offset_of!(Memory, instance) == 0);
230};
231
232impl Memory {
233 /// Creates a new WebAssembly memory given the configuration of `ty`.
234 ///
235 /// The `store` argument will be the owner of the returned [`Memory`]. All
236 /// WebAssembly memory is initialized to zero.
237 ///
238 /// # Panics
239 ///
240 /// This function will panic if the [`Store`](`crate::Store`) has a
241 /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`) (see also:
242 /// [`Store::limiter_async`](`crate::Store::limiter_async`)). When
243 /// using an async resource limiter, use [`Memory::new_async`] instead.
244 ///
245 /// # Examples
246 ///
247 /// ```
248 /// # use wasmtime::*;
249 /// # fn main() -> anyhow::Result<()> {
250 /// let engine = Engine::default();
251 /// let mut store = Store::new(&engine, ());
252 ///
253 /// let memory_ty = MemoryType::new(1, None);
254 /// let memory = Memory::new(&mut store, memory_ty)?;
255 ///
256 /// let module = Module::new(&engine, "(module (memory (import \"\" \"\") 1))")?;
257 /// let instance = Instance::new(&mut store, &module, &[memory.into()])?;
258 /// // ...
259 /// # Ok(())
260 /// # }
261 /// ```
262 pub fn new(mut store: impl AsContextMut, ty: MemoryType) -> Result<Memory> {
263 let (mut limiter, store) = store.as_context_mut().0.resource_limiter_and_store_opaque();
264 vm::one_poll(Self::_new(store, limiter.as_mut(), ty))
265 .expect("must use `new_async` when async resource limiters are in use")
266 }
267
268 /// Async variant of [`Memory::new`]. You must use this variant with
269 /// [`Store`](`crate::Store`)s which have a
270 /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`).
271 ///
272 /// # Panics
273 ///
274 /// This function will panic when used with a non-async
275 /// [`Store`](`crate::Store`).
276 #[cfg(feature = "async")]
277 pub async fn new_async(mut store: impl AsContextMut, ty: MemoryType) -> Result<Memory> {
278 let (mut limiter, store) = store.as_context_mut().0.resource_limiter_and_store_opaque();
279 Self::_new(store, limiter.as_mut(), ty).await
280 }
281
282 /// Helper function for attaching the memory to a "frankenstein" instance
283 async fn _new(
284 store: &mut StoreOpaque,
285 limiter: Option<&mut StoreResourceLimiter<'_>>,
286 ty: MemoryType,
287 ) -> Result<Memory> {
288 if ty.is_shared() {
289 bail!("shared memories must be created through `SharedMemory`")
290 }
291 generate_memory_export(store, limiter, &ty, None).await
292 }
293
294 /// Returns the underlying type of this memory.
295 ///
296 /// # Panics
297 ///
298 /// Panics if this memory doesn't belong to `store`.
299 ///
300 /// # Examples
301 ///
302 /// ```
303 /// # use wasmtime::*;
304 /// # fn main() -> anyhow::Result<()> {
305 /// let engine = Engine::default();
306 /// let mut store = Store::new(&engine, ());
307 /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1))")?;
308 /// let instance = Instance::new(&mut store, &module, &[])?;
309 /// let memory = instance.get_memory(&mut store, "mem").unwrap();
310 /// let ty = memory.ty(&store);
311 /// assert_eq!(ty.minimum(), 1);
312 /// # Ok(())
313 /// # }
314 /// ```
315 pub fn ty(&self, store: impl AsContext) -> MemoryType {
316 let store = store.as_context();
317 MemoryType::from_wasmtime_memory(self.wasmtime_ty(store.0))
318 }
319
320 /// Safely reads memory contents at the given offset into a buffer.
321 ///
322 /// The entire buffer will be filled.
323 ///
324 /// If `offset + buffer.len()` exceed the current memory capacity, then the
325 /// buffer is left untouched and a [`MemoryAccessError`] is returned.
326 ///
327 /// # Panics
328 ///
329 /// Panics if this memory doesn't belong to `store`.
330 pub fn read(
331 &self,
332 store: impl AsContext,
333 offset: usize,
334 buffer: &mut [u8],
335 ) -> Result<(), MemoryAccessError> {
336 let store = store.as_context();
337 let slice = self
338 .data(&store)
339 .get(offset..)
340 .and_then(|s| s.get(..buffer.len()))
341 .ok_or(MemoryAccessError { _private: () })?;
342 buffer.copy_from_slice(slice);
343 Ok(())
344 }
345
346 /// Safely writes contents of a buffer to this memory at the given offset.
347 ///
348 /// If the `offset + buffer.len()` exceeds the current memory capacity, then
349 /// none of the buffer is written to memory and a [`MemoryAccessError`] is
350 /// returned.
351 ///
352 /// # Panics
353 ///
354 /// Panics if this memory doesn't belong to `store`.
355 pub fn write(
356 &self,
357 mut store: impl AsContextMut,
358 offset: usize,
359 buffer: &[u8],
360 ) -> Result<(), MemoryAccessError> {
361 let mut context = store.as_context_mut();
362 self.data_mut(&mut context)
363 .get_mut(offset..)
364 .and_then(|s| s.get_mut(..buffer.len()))
365 .ok_or(MemoryAccessError { _private: () })?
366 .copy_from_slice(buffer);
367 Ok(())
368 }
369
370 /// Returns this memory as a native Rust slice.
371 ///
372 /// Note that this method will consider the entire store context provided as
373 /// borrowed for the duration of the lifetime of the returned slice.
374 ///
375 /// # Panics
376 ///
377 /// Panics if this memory doesn't belong to `store`.
378 pub fn data<'a, T: 'static>(&self, store: impl Into<StoreContext<'a, T>>) -> &'a [u8] {
379 unsafe {
380 let store = store.into();
381 let definition = store[self.instance].memory(self.index);
382 debug_assert!(!self.ty(store).is_shared());
383 slice::from_raw_parts(definition.base.as_ptr(), definition.current_length())
384 }
385 }
386
387 /// Returns this memory as a native Rust mutable slice.
388 ///
389 /// Note that this method will consider the entire store context provided as
390 /// borrowed for the duration of the lifetime of the returned slice.
391 ///
392 /// # Panics
393 ///
394 /// Panics if this memory doesn't belong to `store`.
395 pub fn data_mut<'a, T: 'static>(
396 &self,
397 store: impl Into<StoreContextMut<'a, T>>,
398 ) -> &'a mut [u8] {
399 unsafe {
400 let store = store.into();
401 let definition = store[self.instance].memory(self.index);
402 debug_assert!(!self.ty(store).is_shared());
403 slice::from_raw_parts_mut(definition.base.as_ptr(), definition.current_length())
404 }
405 }
406
407 /// Same as [`Memory::data_mut`], but also returns the `T` from the
408 /// [`StoreContextMut`].
409 ///
410 /// This method can be used when you want to simultaneously work with the
411 /// `T` in the store as well as the memory behind this [`Memory`]. Using
412 /// [`Memory::data_mut`] would consider the entire store borrowed, whereas
413 /// this method allows the Rust compiler to see that the borrow of this
414 /// memory and the borrow of `T` are disjoint.
415 ///
416 /// # Panics
417 ///
418 /// Panics if this memory doesn't belong to `store`.
419 pub fn data_and_store_mut<'a, T: 'static>(
420 &self,
421 store: impl Into<StoreContextMut<'a, T>>,
422 ) -> (&'a mut [u8], &'a mut T) {
423 // Note the unsafety here. Our goal is to simultaneously borrow the
424 // memory and custom data from `store`, and the store it's connected
425 // to. Rust will not let us do that, however, because we must call two
426 // separate methods (both of which borrow the whole `store`) and one of
427 // our borrows is mutable (the custom data).
428 //
429 // This operation, however, is safe because these borrows do not overlap
430 // and in the process of borrowing them mutability doesn't actually
431 // touch anything. This is akin to mutably borrowing two indices in an
432 // array, which is safe so long as the indices are separate.
433 unsafe {
434 let mut store = store.into();
435 let data = &mut *(store.data_mut() as *mut T);
436 (self.data_mut(store), data)
437 }
438 }
439
440 /// Returns the base pointer, in the host's address space, that the memory
441 /// is located at.
442 ///
443 /// For more information and examples see the documentation on the
444 /// [`Memory`] type.
445 ///
446 /// # Panics
447 ///
448 /// Panics if this memory doesn't belong to `store`.
449 pub fn data_ptr(&self, store: impl AsContext) -> *mut u8 {
450 store.as_context()[self.instance]
451 .memory(self.index)
452 .base
453 .as_ptr()
454 }
455
456 /// Returns the byte length of this memory.
457 ///
458 /// WebAssembly memories are made up of a whole number of pages, so the byte
459 /// size returned will always be a multiple of this memory's page size. Note
460 /// that different Wasm memories may have different page sizes. You can get
461 /// a memory's page size via the [`Memory::page_size`] method.
462 ///
463 /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
464 /// `65536`) but [the custom-page-sizes proposal] allows a memory to opt
465 /// into a page size of `1`. Future extensions might allow any power of two
466 /// as a page size.
467 ///
468 /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
469 ///
470 /// For more information and examples see the documentation on the
471 /// [`Memory`] type.
472 ///
473 /// # Panics
474 ///
475 /// Panics if this memory doesn't belong to `store`.
476 pub fn data_size(&self, store: impl AsContext) -> usize {
477 self.internal_data_size(store.as_context().0)
478 }
479
480 pub(crate) fn internal_data_size(&self, store: &StoreOpaque) -> usize {
481 store[self.instance].memory(self.index).current_length()
482 }
483
484 /// Returns the size, in units of pages, of this Wasm memory.
485 ///
486 /// WebAssembly memories are made up of a whole number of pages, so the byte
487 /// size returned will always be a multiple of this memory's page size. Note
488 /// that different Wasm memories may have different page sizes. You can get
489 /// a memory's page size via the [`Memory::page_size`] method.
490 ///
491 /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
492 /// `65536`) but [the custom-page-sizes proposal] allows a memory to opt
493 /// into a page size of `1`. Future extensions might allow any power of two
494 /// as a page size.
495 ///
496 /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
497 ///
498 /// # Panics
499 ///
500 /// Panics if this memory doesn't belong to `store`.
501 pub fn size(&self, store: impl AsContext) -> u64 {
502 self.internal_size(store.as_context().0)
503 }
504
505 pub(crate) fn internal_size(&self, store: &StoreOpaque) -> u64 {
506 let byte_size = self.internal_data_size(store);
507 let page_size = usize::try_from(self._page_size(store)).unwrap();
508 u64::try_from(byte_size / page_size).unwrap()
509 }
510
511 /// Returns the size of a page, in bytes, for this memory.
512 ///
513 /// WebAssembly memories are made up of a whole number of pages, so the byte
514 /// size (as returned by [`Memory::data_size`]) will always be a multiple of
515 /// their page size. Different Wasm memories may have different page sizes.
516 ///
517 /// By default this is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or `65536`)
518 /// but [the custom-page-sizes proposal] allows opting into a page size of
519 /// `1`. Future extensions might allow any power of two as a page size.
520 ///
521 /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
522 pub fn page_size(&self, store: impl AsContext) -> u64 {
523 self._page_size(store.as_context().0)
524 }
525
526 pub(crate) fn _page_size(&self, store: &StoreOpaque) -> u64 {
527 self.wasmtime_ty(store).page_size()
528 }
529
530 /// Returns the log2 of this memory's page size, in bytes.
531 ///
532 /// WebAssembly memories are made up of a whole number of pages, so the byte
533 /// size (as returned by [`Memory::data_size`]) will always be a multiple of
534 /// their page size. Different Wasm memories may have different page sizes.
535 ///
536 /// By default the page size is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or
537 /// `65536`) but [the custom-page-sizes proposal] allows opting into a page
538 /// size of `1`. Future extensions might allow any power of two as a page
539 /// size.
540 ///
541 /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
542 pub fn page_size_log2(&self, store: impl AsContext) -> u8 {
543 self._page_size_log2(store.as_context().0)
544 }
545
546 pub(crate) fn _page_size_log2(&self, store: &StoreOpaque) -> u8 {
547 self.wasmtime_ty(store).page_size_log2
548 }
549
550 /// Grows this WebAssembly memory by `delta` pages.
551 ///
552 /// This will attempt to add `delta` more pages of memory on to the end of
553 /// this `Memory` instance. If successful this may relocate the memory and
554 /// cause [`Memory::data_ptr`] to return a new value. Additionally any
555 /// unsafely constructed slices into this memory may no longer be valid.
556 ///
557 /// On success returns the number of pages this memory previously had
558 /// before the growth succeeded.
559 ///
560 /// Note that, by default, a WebAssembly memory's page size is 64KiB (aka
561 /// 65536 or 2<sup>16</sup>). The [custom-page-sizes proposal] allows Wasm
562 /// memories to opt into a page size of one byte (and this may be further
563 /// relaxed to any power of two in a future extension).
564 ///
565 /// [custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
566 ///
567 /// # Errors
568 ///
569 /// Returns an error if memory could not be grown, for example if it exceeds
570 /// the maximum limits of this memory. A
571 /// [`ResourceLimiter`](crate::ResourceLimiter) is another example of
572 /// preventing a memory to grow.
573 ///
574 /// # Panics
575 ///
576 /// Panics if this memory doesn't belong to `store`.
577 ///
578 /// This function will panic if the [`Store`](`crate::Store`) has a
579 /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`) (see also:
580 /// [`Store::limiter_async`](`crate::Store::limiter_async`). When using an
581 /// async resource limiter, use [`Memory::grow_async`] instead.
582 ///
583 /// # Examples
584 ///
585 /// ```
586 /// # use wasmtime::*;
587 /// # fn main() -> anyhow::Result<()> {
588 /// let engine = Engine::default();
589 /// let mut store = Store::new(&engine, ());
590 /// let module = Module::new(&engine, "(module (memory (export \"mem\") 1 2))")?;
591 /// let instance = Instance::new(&mut store, &module, &[])?;
592 /// let memory = instance.get_memory(&mut store, "mem").unwrap();
593 ///
594 /// assert_eq!(memory.size(&store), 1);
595 /// assert_eq!(memory.grow(&mut store, 1)?, 1);
596 /// assert_eq!(memory.size(&store), 2);
597 /// assert!(memory.grow(&mut store, 1).is_err());
598 /// assert_eq!(memory.size(&store), 2);
599 /// assert_eq!(memory.grow(&mut store, 0)?, 2);
600 /// # Ok(())
601 /// # }
602 /// ```
603 pub fn grow(&self, mut store: impl AsContextMut, delta: u64) -> Result<u64> {
604 let store = store.as_context_mut().0;
605 let (mut limiter, store) = store.resource_limiter_and_store_opaque();
606 vm::one_poll(self._grow(store, limiter.as_mut(), delta))
607 .expect("must use `grow_async` if an async resource limiter is used")
608 }
609
610 /// Async variant of [`Memory::grow`]. Required when using a
611 /// [`ResourceLimiterAsync`](`crate::ResourceLimiterAsync`).
612 ///
613 /// # Panics
614 ///
615 /// This function will panic when used with a non-async
616 /// [`Store`](`crate::Store`).
617 #[cfg(feature = "async")]
618 pub async fn grow_async(&self, mut store: impl AsContextMut, delta: u64) -> Result<u64> {
619 let store = store.as_context_mut();
620 let (mut limiter, store) = store.0.resource_limiter_and_store_opaque();
621 self._grow(store, limiter.as_mut(), delta).await
622 }
623
624 async fn _grow(
625 &self,
626 store: &mut StoreOpaque,
627 limiter: Option<&mut StoreResourceLimiter<'_>>,
628 delta: u64,
629 ) -> Result<u64> {
630 let result = self
631 .instance
632 .get_mut(store)
633 .memory_grow(limiter, self.index, delta)
634 .await?;
635 match result {
636 Some(size) => {
637 let page_size = self.wasmtime_ty(store).page_size();
638 Ok(u64::try_from(size).unwrap() / page_size)
639 }
640 None => bail!("failed to grow memory by `{}`", delta),
641 }
642 }
643
644 pub(crate) fn from_raw(instance: StoreInstanceId, index: DefinedMemoryIndex) -> Memory {
645 Memory { instance, index }
646 }
647
648 pub(crate) fn wasmtime_ty<'a>(&self, store: &'a StoreOpaque) -> &'a wasmtime_environ::Memory {
649 let module = store[self.instance].env_module();
650 let index = module.memory_index(self.index);
651 &module.memories[index]
652 }
653
654 pub(crate) fn vmimport(&self, store: &StoreOpaque) -> crate::runtime::vm::VMMemoryImport {
655 let instance = &store[self.instance];
656 crate::runtime::vm::VMMemoryImport {
657 from: instance.memory_ptr(self.index).into(),
658 vmctx: instance.vmctx().into(),
659 index: self.index,
660 }
661 }
662
663 pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
664 store.id() == self.instance.store_id()
665 }
666
667 /// Get a stable hash key for this memory.
668 ///
669 /// Even if the same underlying memory definition is added to the
670 /// `StoreData` multiple times and becomes multiple `wasmtime::Memory`s,
671 /// this hash key will be consistent across all of these memories.
672 #[cfg(feature = "coredump")]
673 pub(crate) fn hash_key(&self, store: &StoreOpaque) -> impl core::hash::Hash + Eq + use<> {
674 store[self.instance].memory_ptr(self.index).as_ptr().addr()
675 }
676}
677
678/// A linear memory. This trait provides an interface for raw memory buffers
679/// which are used by wasmtime, e.g. inside ['Memory']. Such buffers are in
680/// principle not thread safe. By implementing this trait together with
681/// MemoryCreator, one can supply wasmtime with custom allocated host managed
682/// memory.
683///
684/// # Safety
685///
686/// The memory should be page aligned and a multiple of page size.
687/// To prevent possible silent overflows, the memory should be protected by a
688/// guard page. Additionally the safety concerns explained in ['Memory'], for
689/// accessing the memory apply here as well.
690///
691/// Note that this is a relatively advanced feature and it is recommended to be
692/// familiar with wasmtime runtime code to use it.
693pub unsafe trait LinearMemory: Send + Sync + 'static {
694 /// Returns the number of allocated bytes which are accessible at this time.
695 fn byte_size(&self) -> usize;
696
697 /// Returns byte capacity of this linear memory's current allocation.
698 ///
699 /// Growth up to this value should not relocate the linear memory base
700 /// pointer.
701 fn byte_capacity(&self) -> usize;
702
703 /// Grows this memory to have the `new_size`, in bytes, specified.
704 ///
705 /// Returns `Err` if memory can't be grown by the specified amount
706 /// of bytes. The error may be downcastable to `std::io::Error`.
707 /// Returns `Ok` if memory was grown successfully.
708 fn grow_to(&mut self, new_size: usize) -> Result<()>;
709
710 /// Return the allocated memory as a mutable pointer to u8.
711 fn as_ptr(&self) -> *mut u8;
712}
713
714/// A memory creator. Can be used to provide a memory creator
715/// to wasmtime which supplies host managed memory.
716///
717/// # Safety
718///
719/// This trait is unsafe, as the memory safety depends on proper implementation
720/// of memory management. Memories created by the MemoryCreator should always be
721/// treated as owned by wasmtime instance, and any modification of them outside
722/// of wasmtime invoked routines is unsafe and may lead to corruption.
723///
724/// Note that this is a relatively advanced feature and it is recommended to be
725/// familiar with Wasmtime runtime code to use it.
726pub unsafe trait MemoryCreator: Send + Sync {
727 /// Create a new `LinearMemory` object from the specified parameters.
728 ///
729 /// The type of memory being created is specified by `ty` which indicates
730 /// both the minimum and maximum size, in wasm pages. The minimum and
731 /// maximum sizes, in bytes, are also specified as parameters to avoid
732 /// integer conversion if desired.
733 ///
734 /// The `reserved_size_in_bytes` value indicates the expected size of the
735 /// reservation that is to be made for this memory. If this value is `None`
736 /// than the implementation is free to allocate memory as it sees fit. If
737 /// the value is `Some`, however, then the implementation is expected to
738 /// reserve that many bytes for the memory's allocation, plus the guard
739 /// size at the end. Note that this reservation need only be a virtual
740 /// memory reservation, physical memory does not need to be allocated
741 /// immediately. In this case `grow` should never move the base pointer and
742 /// the maximum size of `ty` is guaranteed to fit within
743 /// `reserved_size_in_bytes`.
744 ///
745 /// The `guard_size_in_bytes` parameter indicates how many bytes of space,
746 /// after the memory allocation, is expected to be unmapped. JIT code will
747 /// elide bounds checks based on the `guard_size_in_bytes` provided, so for
748 /// JIT code to work correctly the memory returned will need to be properly
749 /// guarded with `guard_size_in_bytes` bytes left unmapped after the base
750 /// allocation.
751 ///
752 /// Note that the `reserved_size_in_bytes` and `guard_size_in_bytes` options
753 /// are tuned from the various [`Config`](crate::Config) methods about
754 /// memory sizes/guards. Additionally these two values are guaranteed to be
755 /// multiples of the system page size.
756 ///
757 /// Memory created from this method should be zero filled.
758 fn new_memory(
759 &self,
760 ty: MemoryType,
761 minimum: usize,
762 maximum: Option<usize>,
763 reserved_size_in_bytes: Option<usize>,
764 guard_size_in_bytes: usize,
765 ) -> Result<Box<dyn LinearMemory>, String>;
766}
767
768/// A constructor for externally-created shared memory.
769///
770/// The [threads proposal] adds the concept of "shared memory" to WebAssembly.
771/// This is much the same as a Wasm linear memory (i.e., [`Memory`]), but can be
772/// used concurrently by multiple agents. Because these agents may execute in
773/// different threads, [`SharedMemory`] must be thread-safe.
774///
775/// When the threads proposal is enabled, there are multiple ways to construct
776/// shared memory:
777/// 1. for imported shared memory, e.g., `(import "env" "memory" (memory 1 1
778/// shared))`, the user must supply a [`SharedMemory`] with the
779/// externally-created memory as an import to the instance--e.g.,
780/// `shared_memory.into()`.
781/// 2. for private or exported shared memory, e.g., `(export "env" "memory"
782/// (memory 1 1 shared))`, Wasmtime will create the memory internally during
783/// instantiation--access using `Instance::get_shared_memory()`.
784///
785/// [threads proposal]:
786/// https://github.com/WebAssembly/threads/blob/master/proposals/threads/Overview.md
787///
788/// # Examples
789///
790/// ```
791/// # use wasmtime::*;
792/// # fn main() -> anyhow::Result<()> {
793/// let mut config = Config::new();
794/// config.wasm_threads(true);
795/// # if Engine::new(&config).is_err() { return Ok(()); }
796/// let engine = Engine::new(&config)?;
797/// let mut store = Store::new(&engine, ());
798///
799/// let shared_memory = SharedMemory::new(&engine, MemoryType::shared(1, 2))?;
800/// let module = Module::new(&engine, r#"(module (memory (import "" "") 1 2 shared))"#)?;
801/// let instance = Instance::new(&mut store, &module, &[shared_memory.into()])?;
802/// // ...
803/// # Ok(())
804/// # }
805/// ```
806#[derive(Clone)]
807pub struct SharedMemory {
808 vm: crate::runtime::vm::SharedMemory,
809 engine: Engine,
810 page_size_log2: u8,
811}
812
813impl SharedMemory {
814 /// Construct a [`SharedMemory`] by providing both the `minimum` and
815 /// `maximum` number of 64K-sized pages. This call allocates the necessary
816 /// pages on the system.
817 #[cfg(feature = "threads")]
818 pub fn new(engine: &Engine, ty: MemoryType) -> Result<Self> {
819 if !ty.is_shared() {
820 bail!("shared memory must have the `shared` flag enabled on its memory type")
821 }
822 debug_assert!(ty.maximum().is_some());
823
824 let tunables = engine.tunables();
825 let ty = ty.wasmtime_memory();
826 let page_size_log2 = ty.page_size_log2;
827 let memory = crate::runtime::vm::SharedMemory::new(ty, tunables)?;
828
829 Ok(Self {
830 vm: memory,
831 engine: engine.clone(),
832 page_size_log2,
833 })
834 }
835
836 /// Return the type of the shared memory.
837 pub fn ty(&self) -> MemoryType {
838 MemoryType::from_wasmtime_memory(&self.vm.ty())
839 }
840
841 /// Returns the size, in WebAssembly pages, of this wasm memory.
842 pub fn size(&self) -> u64 {
843 let byte_size = u64::try_from(self.data_size()).unwrap();
844 let page_size = u64::from(self.page_size());
845 byte_size / page_size
846 }
847
848 /// Returns the size of a page, in bytes, for this memory.
849 ///
850 /// By default this is 64KiB (aka `0x10000`, `2**16`, `1<<16`, or `65536`)
851 /// but [the custom-page-sizes proposal] allows opting into a page size of
852 /// `1`. Future extensions might allow any power of two as a page size.
853 ///
854 /// [the custom-page-sizes proposal]: https://github.com/WebAssembly/custom-page-sizes
855 pub fn page_size(&self) -> u32 {
856 debug_assert!(self.page_size_log2 == 0 || self.page_size_log2 == 16);
857 1 << self.page_size_log2
858 }
859
860 /// Returns the byte length of this memory.
861 ///
862 /// The returned value will be a multiple of the wasm page size, 64k.
863 ///
864 /// For more information and examples see the documentation on the
865 /// [`Memory`] type.
866 pub fn data_size(&self) -> usize {
867 self.vm.byte_size()
868 }
869
870 /// Return access to the available portion of the shared memory.
871 ///
872 /// The slice returned represents the region of accessible memory at the
873 /// time that this function was called. The contents of the returned slice
874 /// will reflect concurrent modifications happening on other threads.
875 ///
876 /// # Safety
877 ///
878 /// The returned slice is valid for the entire duration of the lifetime of
879 /// this instance of [`SharedMemory`]. The base pointer of a shared memory
880 /// does not change. This [`SharedMemory`] may grow further after this
881 /// function has been called, but the slice returned will not grow.
882 ///
883 /// Concurrent modifications may be happening to the data returned on other
884 /// threads. The `UnsafeCell<u8>` represents that safe access to the
885 /// contents of the slice is not possible through normal loads and stores.
886 ///
887 /// The memory returned must be accessed safely through the `Atomic*` types
888 /// in the [`std::sync::atomic`] module. Casting to those types must
889 /// currently be done unsafely.
890 pub fn data(&self) -> &[UnsafeCell<u8>] {
891 unsafe {
892 let definition = self.vm.vmmemory_ptr().as_ref();
893 slice::from_raw_parts(definition.base.as_ptr().cast(), definition.current_length())
894 }
895 }
896
897 /// Grows this WebAssembly memory by `delta` pages.
898 ///
899 /// This will attempt to add `delta` more pages of memory on to the end of
900 /// this `Memory` instance. If successful this may relocate the memory and
901 /// cause [`Memory::data_ptr`] to return a new value. Additionally any
902 /// unsafely constructed slices into this memory may no longer be valid.
903 ///
904 /// On success returns the number of pages this memory previously had
905 /// before the growth succeeded.
906 ///
907 /// # Errors
908 ///
909 /// Returns an error if memory could not be grown, for example if it exceeds
910 /// the maximum limits of this memory. A
911 /// [`ResourceLimiter`](crate::ResourceLimiter) is another example of
912 /// preventing a memory to grow.
913 pub fn grow(&self, delta: u64) -> Result<u64> {
914 match self.vm.grow(delta)? {
915 Some((old_size, _new_size)) => {
916 // For shared memory, the `VMMemoryDefinition` is updated inside
917 // the locked region.
918 Ok(u64::try_from(old_size).unwrap() / u64::from(self.page_size()))
919 }
920 None => bail!("failed to grow memory by `{}`", delta),
921 }
922 }
923
924 /// Equivalent of the WebAssembly `memory.atomic.notify` instruction for
925 /// this shared memory.
926 ///
927 /// This method allows embedders to notify threads blocked on the specified
928 /// `addr`, an index into wasm linear memory. Threads could include
929 /// wasm threads blocked on a `memory.atomic.wait*` instruction or embedder
930 /// threads blocked on [`SharedMemory::atomic_wait32`], for example.
931 ///
932 /// The `count` argument is the number of threads to wake up.
933 ///
934 /// This function returns the number of threads awoken.
935 ///
936 /// # Errors
937 ///
938 /// This function will return an error if `addr` is not within bounds or
939 /// not aligned to a 4-byte boundary.
940 pub fn atomic_notify(&self, addr: u64, count: u32) -> Result<u32, Trap> {
941 self.vm.atomic_notify(addr, count)
942 }
943
944 /// Equivalent of the WebAssembly `memory.atomic.wait32` instruction for
945 /// this shared memory.
946 ///
947 /// This method allows embedders to block the current thread until notified
948 /// via the `memory.atomic.notify` instruction or the
949 /// [`SharedMemory::atomic_notify`] method, enabling synchronization with
950 /// the wasm guest as desired.
951 ///
952 /// The `expected` argument is the expected 32-bit value to be stored at
953 /// the byte address `addr` specified. The `addr` specified is an index
954 /// into this linear memory.
955 ///
956 /// The optional `timeout` argument is the maximum amount of time to block
957 /// the current thread. If not specified the thread may sleep indefinitely.
958 ///
959 /// This function returns one of three possible values:
960 ///
961 /// * `WaitResult::Ok` - this function, loaded the value at `addr`, found
962 /// it was equal to `expected`, and then blocked (all as one atomic
963 /// operation). The thread was then awoken with a `memory.atomic.notify`
964 /// instruction or the [`SharedMemory::atomic_notify`] method.
965 /// * `WaitResult::Mismatch` - the value at `addr` was loaded but was not
966 /// equal to `expected` so the thread did not block and immediately
967 /// returned.
968 /// * `WaitResult::TimedOut` - all the steps of `Ok` happened, except this
969 /// thread was woken up due to a timeout.
970 ///
971 /// This function will not return due to spurious wakeups.
972 ///
973 /// # Errors
974 ///
975 /// This function will return an error if `addr` is not within bounds or
976 /// not aligned to a 4-byte boundary.
977 pub fn atomic_wait32(
978 &self,
979 addr: u64,
980 expected: u32,
981 timeout: Option<Duration>,
982 ) -> Result<WaitResult, Trap> {
983 self.vm.atomic_wait32(addr, expected, timeout)
984 }
985
986 /// Equivalent of the WebAssembly `memory.atomic.wait64` instruction for
987 /// this shared memory.
988 ///
989 /// For more information see [`SharedMemory::atomic_wait32`].
990 ///
991 /// # Errors
992 ///
993 /// Returns the same error as [`SharedMemory::atomic_wait32`] except that
994 /// the specified address must be 8-byte aligned instead of 4-byte aligned.
995 pub fn atomic_wait64(
996 &self,
997 addr: u64,
998 expected: u64,
999 timeout: Option<Duration>,
1000 ) -> Result<WaitResult, Trap> {
1001 self.vm.atomic_wait64(addr, expected, timeout)
1002 }
1003
1004 /// Return a reference to the [`Engine`] used to configure the shared
1005 /// memory.
1006 pub(crate) fn engine(&self) -> &Engine {
1007 &self.engine
1008 }
1009
1010 /// Construct a single-memory instance to provide a way to import
1011 /// [`SharedMemory`] into other modules.
1012 pub(crate) fn vmimport(&self, store: &mut StoreOpaque) -> crate::runtime::vm::VMMemoryImport {
1013 // Note `vm::assert_ready` shouldn't panic here because this isn't
1014 // actually allocating any new memory (also no limiter), so resource
1015 // limiting shouldn't kick in.
1016 vm::assert_ready(generate_memory_export(
1017 store,
1018 None,
1019 &self.ty(),
1020 Some(&self.vm),
1021 ))
1022 .unwrap()
1023 .vmimport(store)
1024 }
1025
1026 /// Create a [`SharedMemory`] from an [`ExportMemory`] definition. This
1027 /// function is available to handle the case in which a Wasm module exports
1028 /// shared memory and the user wants host-side access to it.
1029 pub(crate) fn from_memory(mem: Memory, store: &StoreOpaque) -> Self {
1030 #![cfg_attr(
1031 not(feature = "threads"),
1032 expect(
1033 unused_variables,
1034 unreachable_code,
1035 reason = "definitions cfg'd to dummy",
1036 )
1037 )]
1038
1039 let instance = mem.instance.get(store);
1040 let memory = instance.get_defined_memory(mem.index);
1041 let module = instance.env_module();
1042 let page_size_log2 = module.memories[module.memory_index(mem.index)].page_size_log2;
1043 match memory.as_shared_memory() {
1044 Some(mem) => Self {
1045 vm: mem.clone(),
1046 engine: store.engine().clone(),
1047 page_size_log2,
1048 },
1049 None => panic!("unable to convert from a shared memory"),
1050 }
1051 }
1052}
1053
1054impl fmt::Debug for SharedMemory {
1055 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1056 f.debug_struct("SharedMemory").finish_non_exhaustive()
1057 }
1058}
1059
1060#[cfg(test)]
1061mod tests {
1062 use crate::*;
1063
1064 // Assert that creating a memory via `Memory::new` respects the limits/tunables
1065 // in `Config`.
1066 #[test]
1067 fn respect_tunables() {
1068 let mut cfg = Config::new();
1069 cfg.memory_reservation(0).memory_guard_size(0);
1070 let mut store = Store::new(&Engine::new(&cfg).unwrap(), ());
1071 let ty = MemoryType::new(1, None);
1072 let mem = Memory::new(&mut store, ty).unwrap();
1073 let store = store.as_context();
1074 let tunables = store.engine().tunables();
1075 assert_eq!(tunables.memory_guard_size, 0);
1076 assert!(
1077 !mem.wasmtime_ty(store.0)
1078 .can_elide_bounds_check(tunables, 12)
1079 );
1080 }
1081
1082 #[test]
1083 fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
1084 let mut store = Store::<()>::default();
1085 let module = Module::new(
1086 store.engine(),
1087 r#"
1088 (module
1089 (memory (export "m") 1 1)
1090 )
1091 "#,
1092 )?;
1093 let instance = Instance::new(&mut store, &module, &[])?;
1094
1095 // Each time we `get_memory`, we call `Memory::from_wasmtime` which adds
1096 // a new entry to `StoreData`, so `g1` and `g2` will have different
1097 // indices into `StoreData`.
1098 let m1 = instance.get_memory(&mut store, "m").unwrap();
1099 let m2 = instance.get_memory(&mut store, "m").unwrap();
1100
1101 // That said, they really point to the same memory.
1102 assert_eq!(m1.data(&store)[0], 0);
1103 assert_eq!(m2.data(&store)[0], 0);
1104 m1.data_mut(&mut store)[0] = 42;
1105 assert_eq!(m1.data(&mut store)[0], 42);
1106 assert_eq!(m2.data(&mut store)[0], 42);
1107
1108 // And therefore their hash keys are the same.
1109 assert!(m1.hash_key(&store.as_context().0) == m2.hash_key(&store.as_context().0));
1110
1111 // But the hash keys are different from different memories.
1112 let instance2 = Instance::new(&mut store, &module, &[])?;
1113 let m3 = instance2.get_memory(&mut store, "m").unwrap();
1114 assert!(m1.hash_key(&store.as_context().0) != m3.hash_key(&store.as_context().0));
1115
1116 Ok(())
1117 }
1118}