1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
//! A bounded single-producer single-consumer pipe.
//!
//! This crate provides a ring buffer that can be asynchronously read from and written to. It is
//! created via the [`pipe`] function, which returns a pair of [`Reader`] and [`Writer`] handles.
//! They implement the [`AsyncRead`] and [`AsyncWrite`] traits, respectively.
//!
//! The handles are single-producer/single-consumer; to clarify, they cannot be cloned and need `&mut`
//! access to read or write to them. If multiple-producer/multiple-consumer handles are needed,
//! consider wrapping them in an `Arc<Mutex<...>>` or similar.
//!
//! When the sender is dropped, remaining bytes in the pipe can still be read. After that, attempts
//! to read will result in `Ok(0)`, i.e. they will always 'successfully' read 0 bytes.
//!
//! When the receiver is dropped, the pipe is closed and no more bytes and be written into it.
//! Further writes will result in `Ok(0)`, i.e. they will always 'successfully' write 0 bytes.
//!
//! # Version 0.2.0 Notes
//!
//! Previously, this crate contained other synchronization primitives, such as bounded channels, locks,
//! and event listeners. These have been split out into their own crates:
//!
//! - [`async-channel`](https://docs.rs/async-channel)
//! - [`async-dup`](https://docs.rs/async-dup)
//! - [`async-lock`](https://docs.rs/async-lock)
//! - [`async-mutex`](https://docs.rs/async-mutex)
//! - [`event-listener`](https://docs.rs/event-listener)
//!
//! # Examples
//!
//! ## Asynchronous Tasks
//!
//! Communicate between asynchronous tasks, potentially on other threads.
//!
//! ```
//! use async_channel::unbounded;
//! use async_executor::Executor;
//! use easy_parallel::Parallel;
//! use futures_lite::{future, prelude::*};
//! use std::time::Duration;
//!
//! # if cfg!(miri) { return; }
//!
//! // Create a pair of handles.
//! let (mut reader, mut writer) = piper::pipe(1024);
//!
//! // Create the executor.
//! let ex = Executor::new();
//! let (signal, shutdown) = unbounded::<()>();
//!
//! // Spawn a detached task for random data to the pipe.
//! let writer = ex.spawn(async move {
//!     for _ in 0..1_000 {
//!         // Generate 8 random numnbers.
//!         let random = fastrand::u64(..).to_le_bytes();
//!
//!         // Write them to the pipe.
//!         writer.write_all(&random).await.unwrap();
//!
//!         // Wait a bit.
//!         async_io::Timer::after(Duration::from_millis(5)).await;
//!     }
//!
//!     // Drop the writer to close the pipe.
//!     drop(writer);
//! });
//!
//! // Detach the task so that it runs in the background.
//! writer.detach();
//!
//! // Spawn a task for reading from the pipe.
//! let reader = ex.spawn(async move {
//!     let mut buf = vec![];
//!
//!     // Read all bytes from the pipe.
//!     reader.read_to_end(&mut buf).await.unwrap();
//!
//!     println!("Random data: {:#?}", buf);
//! });
//!
//! Parallel::new()
//!     // Run four executor threads.
//!     .each(0..4, |_| future::block_on(ex.run(shutdown.recv())))
//!     // Run the main future on the current thread.
//!     .finish(|| future::block_on(async {
//!         // Wait for the reader to finish.
//!         reader.await;
//!
//!         // Signal the executor threads to shut down.
//!         drop(signal);
//!     }));
//! ```
//!
//! ## Blocking I/O
//!
//! File I/O is blocking; therefore, in `async` code, you must run it on another thread. This example
//! spawns another thread for reading a file and writing it to a pipe.
//!
//! ```no_run
//! use futures_lite::{future, prelude::*};
//! use std::fs::File;
//! use std::io::prelude::*;
//! use std::thread;
//!
//! // Create a pair of handles.
//! let (mut r, mut w) = piper::pipe(1024);
//!
//! // Spawn a thread for reading a file.
//! thread::spawn(move || {
//!     let mut file = File::open("Cargo.toml").unwrap();
//!
//!     // Read the file into a buffer.
//!     let mut buf = [0u8; 16384];
//!     future::block_on(async move {
//!         loop {
//!             // Read a chunk of bytes from the file.
//!             // Blocking is okay here, since this is a separate thread.
//!             let n = file.read(&mut buf).unwrap();
//!             if n == 0 {
//!                 break;
//!             }
//!
//!             // Write the chunk to the pipe.
//!             w.write_all(&buf[..n]).await.unwrap();
//!         }
//!
//!         // Close the pipe.
//!         drop(w);
//!     });
//! });
//!
//! # future::block_on(async move {
//! // Read bytes from the pipe.
//! let mut buf = vec![];
//! r.read_to_end(&mut buf).await.unwrap();
//!
//! println!("Read {} bytes", buf.len());
//! # });
//! ```
//!
//! However, the lower-level [`poll_fill`] and [`poll_drain`] methods take `impl Read` and `impl Write`
//! arguments, respectively. This allows you to skip the buffer entirely and read/write directly from
//! the file into the pipe. This approach should be preferred when possible, as it avoids an extra
//! copy.
//!
//! ```no_run
//! # use futures_lite::future;
//! # use std::fs::File;
//! # let mut file: File = unimplemented!();
//! # let mut w: piper::Writer = unimplemented!();
//! // In the `future::block_on` call above...
//! # future::block_on(async move {
//! loop {
//!     let n = future::poll_fn(|cx| w.poll_fill(cx, &mut file)).await.unwrap();
//!     if n == 0 {
//!         break;
//!     }
//! }
//! # });
//! ```
//!
//! The [`blocking`] crate is preferred in this use case, since it uses more efficient strategies for
//! thread management and pipes.
//!
//! [`poll_fill`]: struct.Writer.html#method.poll_fill
//! [`poll_drain`]: struct.Reader.html#method.poll_drain
//! [`blocking`]: https://docs.rs/blocking

#![cfg_attr(not(feature = "std"), no_std)]
#![forbid(missing_docs)]
#![doc(
    html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]

extern crate alloc;

use core::convert::Infallible;
use core::mem;
use core::slice;
use core::task::{Context, Poll};

use alloc::vec::Vec;

use sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};
use sync::Arc;

#[cfg(feature = "std")]
use std::{
    io::{self, Read, Write},
    pin::Pin,
};

use atomic_waker::AtomicWaker;

#[cfg(feature = "std")]
use futures_io::{AsyncRead, AsyncWrite};

macro_rules! ready {
    ($e:expr) => {{
        match $e {
            Poll::Ready(t) => t,
            Poll::Pending => return Poll::Pending,
        }
    }};
}

/// Creates a bounded single-producer single-consumer pipe.
///
/// A pipe is a ring buffer of `cap` bytes that can be asynchronously read from and written to.
///
/// See the [crate-level documentation](index.html) for more details.
///
/// # Panics
///
/// This function panics if `cap` is 0 or if `cap * 2` overflows a `usize`.
#[allow(clippy::incompatible_msrv)] // false positive: https://github.com/rust-lang/rust-clippy/issues/12280
pub fn pipe(cap: usize) -> (Reader, Writer) {
    assert!(cap > 0, "capacity must be positive");
    assert!(cap.checked_mul(2).is_some(), "capacity is too large");

    // Allocate the ring buffer.
    let mut v = Vec::with_capacity(cap);
    let buffer = v.as_mut_ptr();
    mem::forget(v);

    let inner = Arc::new(Pipe {
        head: AtomicUsize::new(0),
        tail: AtomicUsize::new(0),
        reader: AtomicWaker::new(),
        writer: AtomicWaker::new(),
        closed: AtomicBool::new(false),
        buffer,
        cap,
    });

    // Use a random number generator to randomize fair yielding behavior.
    let mut rng = rng();

    let r = Reader {
        inner: inner.clone(),
        head: 0,
        tail: 0,
        rng: rng.fork(),
    };

    let w = Writer {
        inner,
        head: 0,
        tail: 0,
        zeroed_until: 0,
        rng,
    };

    (r, w)
}

/// The reading side of a pipe.
///
/// This type is created by the [`pipe`] function. See its documentation for more details.
pub struct Reader {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.head`.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.tail` that might become stale at any point.
    tail: usize,

    /// Random number generator.
    rng: fastrand::Rng,
}

/// The writing side of a pipe.
///
/// This type is created by the [`pipe`] function. See its documentation for more details.
pub struct Writer {
    /// The inner ring buffer.
    inner: Arc<Pipe>,

    /// The head index, moved by the reader, in the range `0..2*cap`.
    ///
    /// This index is a snapshot of `index.head` that might become stale at any point.
    head: usize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    ///
    /// This index always matches `inner.tail`.
    tail: usize,

    /// How many bytes at the beginning of the buffer have been zeroed.
    ///
    /// The pipe allocates an uninitialized buffer, and we must be careful about passing
    /// uninitialized data to user code. Zeroing the buffer right after allocation would be too
    /// expensive, so we zero it in smaller chunks as the writer makes progress.
    zeroed_until: usize,

    /// Random number generator.
    rng: fastrand::Rng,
}

/// The inner ring buffer.
///
/// Head and tail indices are in the range `0..2*cap`, even though they really map onto the
/// `0..cap` range. The distance between head and tail indices is never more than `cap`.
///
/// The reason why indices are not in the range `0..cap` is because we need to distinguish between
/// the pipe being empty and being full. If head and tail were in `0..cap`, then `head == tail`
/// could mean the pipe is either empty or full, but we don't know which!
struct Pipe {
    /// The head index, moved by the reader, in the range `0..2*cap`.
    head: AtomicUsize,

    /// The tail index, moved by the writer, in the range `0..2*cap`.
    tail: AtomicUsize,

    /// A waker representing the blocked reader.
    reader: AtomicWaker,

    /// A waker representing the blocked writer.
    writer: AtomicWaker,

    /// Set to `true` if the reader or writer was dropped.
    closed: AtomicBool,

    /// The byte buffer.
    buffer: *mut u8,

    /// The buffer capacity.
    cap: usize,
}

unsafe impl Sync for Pipe {}
unsafe impl Send for Pipe {}

impl Drop for Pipe {
    fn drop(&mut self) {
        // Deallocate the byte buffer.
        unsafe {
            Vec::from_raw_parts(self.buffer, 0, self.cap);
        }
    }
}

impl Drop for Reader {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the writer.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.writer.wake();
    }
}

impl Drop for Writer {
    fn drop(&mut self) {
        // Dropping closes the pipe and then wakes the reader.
        self.inner.closed.store(true, Ordering::SeqCst);
        self.inner.reader.wake();
    }
}

impl Pipe {
    /// Get the length of the data in the pipe.
    fn len(&self) -> usize {
        let head = self.head.load(Ordering::Acquire);
        let tail = self.tail.load(Ordering::Acquire);

        if head <= tail {
            tail - head
        } else {
            (2 * self.cap) - (head - tail)
        }
    }
}

impl Reader {
    /// Gets the total length of the data in the pipe.
    ///
    /// This method returns the number of bytes that have been written into the pipe but haven't been
    /// read yet.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut reader, mut writer) = piper::pipe(10);
    /// let _ = writer.try_fill(&[0u8; 5]);
    /// assert_eq!(reader.len(), 5);
    /// ```
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Tell whether or not the pipe is empty.
    ///
    /// This method returns `true` if the pipe is empty, and `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut reader, mut writer) = piper::pipe(10);
    /// assert!(reader.is_empty());
    /// let _ = writer.try_fill(&[0u8; 5]);
    /// assert!(!reader.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.inner.len() == 0
    }

    /// Gets the total capacity of the pipe.
    ///
    /// This method returns the number of bytes that the pipe can hold at a time.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// let (reader, _) = piper::pipe(10);
    /// assert_eq!(reader.capacity(), 10);
    /// # });
    /// ```
    pub fn capacity(&self) -> usize {
        self.inner.cap
    }

    /// Tell whether or not the pipe is full.
    ///
    /// The pipe is full if the number of bytes written into it is equal to its capacity. At this point,
    /// writes will block until some data is read from the pipe.
    ///
    /// This method returns `true` if the pipe is full, and `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut reader, mut writer) = piper::pipe(10);
    /// assert!(!reader.is_full());
    /// let _ = writer.try_fill(&[0u8; 10]);
    /// assert!(reader.is_full());
    /// let _ = reader.try_drain(&mut [0u8; 5]);
    /// assert!(!reader.is_full());
    /// ```
    pub fn is_full(&self) -> bool {
        self.inner.len() == self.inner.cap
    }

    /// Tell whether or not the pipe is closed.
    ///
    /// The pipe is closed if either the reader or the writer has been dropped. At this point, attempting
    /// to write into the pipe will return `Poll::Ready(Ok(0))` and attempting to read from the pipe after
    /// any previously written bytes are read will return `Poll::Ready(Ok(0))`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// let (mut reader, mut writer) = piper::pipe(10);
    /// assert!(!reader.is_closed());
    /// drop(writer);
    /// assert!(reader.is_closed());
    /// # });
    /// ```
    pub fn is_closed(&self) -> bool {
        self.inner.closed.load(Ordering::SeqCst)
    }

    /// Reads bytes from this reader and writes into blocking `dest`.
    ///
    /// This method reads directly from the pipe's internal buffer into `dest`. This avoids an extra copy,
    /// but it may block the thread if `dest` blocks.
    ///
    /// If the pipe is empty, this method returns `Poll::Pending`. If the pipe is closed, this method
    /// returns `Poll::Ready(Ok(0))`. Errors in `dest` are bubbled up through `Poll::Ready(Err(e))`.
    /// Otherwise, this method returns `Poll::Ready(Ok(n))` where `n` is the number of bytes written.
    ///
    /// This method is only available when the `std` feature is enabled. For `no_std` environments,
    /// consider using [`poll_drain_bytes`] instead.
    ///
    /// [`poll_drain_bytes`]: #method.poll_drain_bytes
    ///
    /// # Examples
    ///
    /// ```
    /// use futures_lite::{future, prelude::*};
    /// # future::block_on(async {
    ///
    /// let (mut r, mut w) = piper::pipe(1024);
    ///
    /// // Write some data to the pipe.
    /// w.write_all(b"hello world").await.unwrap();
    ///
    /// // Try reading from the pipe.
    /// let mut buf = [0; 1024];
    /// let n = future::poll_fn(|cx| r.poll_drain(cx, &mut buf[..])).await.unwrap();
    ///
    /// // The data was written to the buffer.
    /// assert_eq!(&buf[..n], b"hello world");
    /// # });
    /// ```
    #[cfg(feature = "std")]
    pub fn poll_drain(
        &mut self,
        cx: &mut Context<'_>,
        dest: impl Write,
    ) -> Poll<io::Result<usize>> {
        self.drain_inner(Some(cx), dest)
    }

    /// Reads bytes from this reader.
    ///
    /// Rather than taking a `Write` trait object, this method takes a slice of bytes to write into.
    /// Because of this, it is infallible and can be used in `no_std` environments.
    ///
    /// The same conditions that apply to [`poll_drain`] apply to this method.
    ///
    /// [`poll_drain`]: #method.poll_drain
    ///
    /// # Examples
    ///
    /// ```
    /// use futures_lite::{future, prelude::*};
    /// # future::block_on(async {
    /// let (mut r, mut w) = piper::pipe(1024);
    ///
    /// // Write some data to the pipe.
    /// w.write_all(b"hello world").await.unwrap();
    ///
    /// // Try reading from the pipe.
    /// let mut buf = [0; 1024];
    /// let n = future::poll_fn(|cx| r.poll_drain_bytes(cx, &mut buf[..])).await;
    ///
    /// // The data was written to the buffer.
    /// assert_eq!(&buf[..n], b"hello world");
    /// # });
    /// ```
    pub fn poll_drain_bytes(&mut self, cx: &mut Context<'_>, dest: &mut [u8]) -> Poll<usize> {
        match self.drain_inner(Some(cx), WriteBytes(dest)) {
            Poll::Ready(Ok(n)) => Poll::Ready(n),
            Poll::Ready(Err(e)) => match e {},
            Poll::Pending => Poll::Pending,
        }
    }

    /// Tries to read bytes from this reader.
    ///
    /// Returns the total number of bytes that were read from this reader.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut r, mut w) = piper::pipe(1024);
    ///
    /// // `try_drain()` returns 0 off the bat.
    /// let mut buf = [0; 10];
    /// assert_eq!(r.try_drain(&mut buf), 0);
    ///
    /// // After a write it returns the data.
    /// w.try_fill(&[0, 1, 2, 3, 4]);
    /// assert_eq!(r.try_drain(&mut buf), 5);
    /// assert_eq!(&buf[..5], &[0, 1, 2, 3, 4]);
    /// ```
    pub fn try_drain(&mut self, dest: &mut [u8]) -> usize {
        match self.drain_inner(None, WriteBytes(dest)) {
            Poll::Ready(Ok(n)) => n,
            Poll::Ready(Err(e)) => match e {},
            Poll::Pending => 0,
        }
    }

    /// Reads bytes from this reader and writes into blocking `dest`.
    #[inline]
    fn drain_inner<W: WriteLike>(
        &mut self,
        mut cx: Option<&mut Context<'_>>,
        mut dest: W,
    ) -> Poll<Result<usize, W::Error>> {
        let cap = self.inner.cap;

        // Calculates the distance between two indices.
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be empty...
        if distance(self.head, self.tail) == 0 {
            // Reload the tail in case it's become stale.
            self.tail = self.inner.tail.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == 0 {
                // Register the waker.
                if let Some(cx) = cx.as_mut() {
                    self.inner.reader.register(cx.waker());
                }
                atomic::fence(Ordering::SeqCst);

                // Reload the tail after registering the waker.
                self.tail = self.inner.tail.load(Ordering::Acquire);

                // If the pipe is still empty...
                if distance(self.head, self.tail) == 0 {
                    // Check whether the pipe is closed or just empty.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not empty so remove the waker.
        self.inner.reader.take();

        // Yield with some small probability - this improves fairness.
        if let Some(cx) = cx {
            ready!(maybe_yield(&mut self.rng, cx));
        }

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes read so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to read in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the writer soon!
                .min(distance(self.head, self.tail)) // No more than bytes in the pipe.
                .min(cap - real_index(self.head)); // Don't go past the buffer boundary.

            // Create a slice of data in the pipe buffer.
            let pipe_slice =
                unsafe { slice::from_raw_parts(self.inner.buffer.add(real_index(self.head)), n) };

            // Copy bytes from the pipe buffer into `dest`.
            let n = dest.write(pipe_slice)?;
            count += n;

            // If pipe is empty or `dest` is full, return.
            if n == 0 {
                return Poll::Ready(Ok(count));
            }

            // Move the head forward.
            if self.head + n < 2 * cap {
                self.head += n;
            } else {
                self.head = 0;
            }

            // Store the current head index.
            self.inner.head.store(self.head, Ordering::Release);

            // Wake the writer because the pipe is not full.
            self.inner.writer.wake();
        }
    }
}

#[cfg(feature = "std")]
impl AsyncRead for Reader {
    fn poll_read(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        self.poll_drain_bytes(cx, buf).map(Ok)
    }
}

impl Writer {
    /// Gets the total length of the data in the pipe.
    ///
    /// This method returns the number of bytes that have been written into the pipe but haven't been
    /// read yet.
    ///
    /// # Examples
    ///
    /// ```
    /// let (_reader, mut writer) = piper::pipe(10);
    /// let _ = writer.try_fill(&[0u8; 5]);
    /// assert_eq!(writer.len(), 5);
    /// ```
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Tell whether or not the pipe is empty.
    ///
    /// This method returns `true` if the pipe is empty, and `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let (_reader, mut writer) = piper::pipe(10);
    /// assert!(writer.is_empty());
    /// let _ = writer.try_fill(&[0u8; 5]);
    /// assert!(!writer.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.inner.len() == 0
    }

    /// Gets the total capacity of the pipe.
    ///
    /// This method returns the number of bytes that the pipe can hold at a time.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// let (_, writer) = piper::pipe(10);
    /// assert_eq!(writer.capacity(), 10);
    /// # });
    /// ```
    pub fn capacity(&self) -> usize {
        self.inner.cap
    }

    /// Tell whether or not the pipe is full.
    ///
    /// The pipe is full if the number of bytes written into it is equal to its capacity. At this point,
    /// writes will block until some data is read from the pipe.
    ///
    /// This method returns `true` if the pipe is full, and `false` otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut reader, mut writer) = piper::pipe(10);
    /// assert!(!writer.is_full());
    /// let _ = writer.try_fill(&[0u8; 10]);
    /// assert!(writer.is_full());
    /// let _ = reader.try_drain(&mut [0u8; 5]);
    /// assert!(!writer.is_full());
    /// ```
    pub fn is_full(&self) -> bool {
        self.inner.len() == self.inner.cap
    }

    /// Tell whether or not the pipe is closed.
    ///
    /// The pipe is closed if either the reader or the writer has been dropped. At this point, attempting
    /// to write into the pipe will return `Poll::Ready(Ok(0))` and attempting to read from the pipe after
    /// any previously written bytes are read will return `Poll::Ready(Ok(0))`.
    ///
    /// # Examples
    ///
    /// ```
    /// # futures_lite::future::block_on(async {
    /// let (reader, writer) = piper::pipe(10);
    /// assert!(!writer.is_closed());
    /// drop(reader);
    /// assert!(writer.is_closed());
    /// # });
    /// ```
    pub fn is_closed(&self) -> bool {
        self.inner.closed.load(Ordering::SeqCst)
    }

    /// Reads bytes from blocking `src` and writes into this writer.
    ///
    /// This method writes directly from `src` into the pipe's internal buffer. This avoids an extra copy,
    /// but it may block the thread if `src` blocks.
    ///
    /// If the pipe is full, this method returns `Poll::Pending`. If the pipe is closed, this method
    /// returns `Poll::Ready(Ok(0))`. Errors in `src` are bubbled up through `Poll::Ready(Err(e))`.
    /// Otherwise, this method returns `Poll::Ready(Ok(n))` where `n` is the number of bytes read.
    ///
    /// This method is only available when the `std` feature is enabled. For `no_std` environments,
    /// consider using [`poll_fill_bytes`] instead.
    ///
    /// [`poll_fill_bytes`]: #method.poll_fill_bytes
    ///
    /// # Examples
    ///
    /// ```
    /// use futures_lite::{future, prelude::*};
    /// # future::block_on(async {
    ///
    /// // Create a pipe.
    /// let (mut reader, mut writer) = piper::pipe(1024);
    ///
    /// // Fill the pipe with some bytes.
    /// let data = b"hello world";
    /// let n = future::poll_fn(|cx| writer.poll_fill(cx, &data[..])).await.unwrap();
    /// assert_eq!(n, data.len());
    ///
    /// // Read the bytes back.
    /// let mut buf = [0; 1024];
    /// reader.read_exact(&mut buf[..data.len()]).await.unwrap();
    /// assert_eq!(&buf[..data.len()], data);
    /// # });
    /// ```
    #[cfg(feature = "std")]
    pub fn poll_fill(&mut self, cx: &mut Context<'_>, src: impl Read) -> Poll<io::Result<usize>> {
        self.fill_inner(Some(cx), src)
    }

    /// Writes bytes into this writer.
    ///
    /// Rather than taking a `Read` trait object, this method takes a slice of bytes to read from.
    /// Because of this, it is infallible and can be used in `no_std` environments.
    ///
    /// The same conditions that apply to [`poll_fill`] apply to this method.
    ///
    /// [`poll_fill`]: #method.poll_fill
    ///
    /// # Examples
    ///
    /// ```
    /// use futures_lite::{future, prelude::*};
    /// # future::block_on(async {
    ///
    /// // Create a pipe.
    /// let (mut reader, mut writer) = piper::pipe(1024);
    ///
    /// // Fill the pipe with some bytes.
    /// let data = b"hello world";
    /// let n = future::poll_fn(|cx| writer.poll_fill_bytes(cx, &data[..])).await;
    /// assert_eq!(n, data.len());
    ///
    /// // Read the bytes back.
    /// let mut buf = [0; 1024];
    /// reader.read_exact(&mut buf[..data.len()]).await.unwrap();
    /// assert_eq!(&buf[..data.len()], data);
    /// # });
    /// ```
    pub fn poll_fill_bytes(&mut self, cx: &mut Context<'_>, bytes: &[u8]) -> Poll<usize> {
        match self.fill_inner(Some(cx), ReadBytes(bytes)) {
            Poll::Ready(Ok(n)) => Poll::Ready(n),
            Poll::Ready(Err(e)) => match e {},
            Poll::Pending => Poll::Pending,
        }
    }

    /// Tries to write bytes to this writer.
    ///
    /// Returns the total number of bytes that were read from this reader.
    ///
    /// # Examples
    ///
    /// ```
    /// let (mut r, mut w) = piper::pipe(1024);
    ///
    /// let mut buf = [0; 10];
    /// assert_eq!(w.try_fill(&[0, 1, 2, 3, 4]), 5);
    /// assert_eq!(r.try_drain(&mut buf), 5);
    /// assert_eq!(&buf[..5], &[0, 1, 2, 3, 4]);
    /// ```
    pub fn try_fill(&mut self, dest: &[u8]) -> usize {
        match self.fill_inner(None, ReadBytes(dest)) {
            Poll::Ready(Ok(n)) => n,
            Poll::Ready(Err(e)) => match e {},
            Poll::Pending => 0,
        }
    }

    /// Reads bytes from blocking `src` and writes into this writer.
    #[inline]
    fn fill_inner<R: ReadLike>(
        &mut self,
        mut cx: Option<&mut Context<'_>>,
        mut src: R,
    ) -> Poll<Result<usize, R::Error>> {
        // Just a quick check if the pipe is closed, which is why a relaxed load is okay.
        if self.inner.closed.load(Ordering::Relaxed) {
            return Poll::Ready(Ok(0));
        }

        // Calculates the distance between two indices.
        let cap = self.inner.cap;
        let distance = |a: usize, b: usize| {
            if a <= b {
                b - a
            } else {
                2 * cap - (a - b)
            }
        };

        // If the pipe appears to be full...
        if distance(self.head, self.tail) == cap {
            // Reload the head in case it's become stale.
            self.head = self.inner.head.load(Ordering::Acquire);

            // If the pipe is now really empty...
            if distance(self.head, self.tail) == cap {
                // Register the waker.
                if let Some(cx) = cx.as_mut() {
                    self.inner.writer.register(cx.waker());
                }
                atomic::fence(Ordering::SeqCst);

                // Reload the head after registering the waker.
                self.head = self.inner.head.load(Ordering::Acquire);

                // If the pipe is still full...
                if distance(self.head, self.tail) == cap {
                    // Check whether the pipe is closed or just full.
                    if self.inner.closed.load(Ordering::Relaxed) {
                        return Poll::Ready(Ok(0));
                    } else {
                        return Poll::Pending;
                    }
                }
            }
        }

        // The pipe is not full so remove the waker.
        self.inner.writer.take();

        // Yield with some small probability - this improves fairness.
        if let Some(cx) = cx {
            ready!(maybe_yield(&mut self.rng, cx));
        }

        // Given an index in `0..2*cap`, returns the real index in `0..cap`.
        let real_index = |i: usize| {
            if i < cap {
                i
            } else {
                i - cap
            }
        };

        // Number of bytes written so far.
        let mut count = 0;

        loop {
            // Calculate how many bytes to write in this iteration.
            let n = (128 * 1024) // Not too many bytes in one go - better to wake the reader soon!
                .min(self.zeroed_until * 2 + 4096) // Don't zero too many bytes when starting.
                .min(cap - distance(self.head, self.tail)) // No more than space in the pipe.
                .min(cap - real_index(self.tail)); // Don't go past the buffer boundary.

            // Create a slice of available space in the pipe buffer.
            let pipe_slice_mut = unsafe {
                let from = real_index(self.tail);
                let to = from + n;

                // Make sure all bytes in the slice are initialized.
                if self.zeroed_until < to {
                    self.inner
                        .buffer
                        .add(self.zeroed_until)
                        .write_bytes(0u8, to - self.zeroed_until);
                    self.zeroed_until = to;
                }

                slice::from_raw_parts_mut(self.inner.buffer.add(from), n)
            };

            // Copy bytes from `src` into the piper buffer.
            let n = src.read(pipe_slice_mut)?;
            count += n;

            // If the pipe is full or closed, or `src` is empty, return.
            if n == 0 || self.inner.closed.load(Ordering::Relaxed) {
                return Poll::Ready(Ok(count));
            }

            // Move the tail forward.
            if self.tail + n < 2 * cap {
                self.tail += n;
            } else {
                self.tail = 0;
            }

            // Store the current tail index.
            self.inner.tail.store(self.tail, Ordering::Release);

            // Wake the reader because the pipe is not empty.
            self.inner.reader.wake();
        }
    }
}

#[cfg(feature = "std")]
impl AsyncWrite for Writer {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        self.poll_fill_bytes(cx, buf).map(Ok)
    }

    fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        // Nothing to flush.
        Poll::Ready(Ok(()))
    }

    fn poll_close(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        // Set the closed flag.
        self.inner.closed.store(true, Ordering::Release);

        // Wake up any tasks that may be waiting on the pipe.
        self.inner.reader.wake();
        self.inner.writer.wake();

        // The pipe is now closed.
        Poll::Ready(Ok(()))
    }
}

/// A trait for reading bytes into a pipe.
trait ReadLike {
    /// The error type.
    type Error;

    /// Reads bytes into the given buffer.
    fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error>;
}

#[cfg(feature = "std")]
impl<R: Read> ReadLike for R {
    type Error = io::Error;

    fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        Read::read(self, buf)
    }
}

/// Implements `no_std` reading around a byte slice.
struct ReadBytes<'a>(&'a [u8]);

impl ReadLike for ReadBytes<'_> {
    type Error = Infallible;

    fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
        let n = self.0.len().min(buf.len());
        buf[..n].copy_from_slice(&self.0[..n]);
        self.0 = &self.0[n..];
        Ok(n)
    }
}

/// A trait for writing bytes from a pipe.
trait WriteLike {
    /// The error type.
    type Error;

    /// Writes bytes from the given buffer.
    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error>;
}

#[cfg(feature = "std")]
impl<W: Write> WriteLike for W {
    type Error = io::Error;

    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        Write::write(self, buf)
    }
}

/// Implements `no_std` writing around a byte slice.
struct WriteBytes<'a>(&'a mut [u8]);

impl WriteLike for WriteBytes<'_> {
    type Error = Infallible;

    fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
        let n = self.0.len().min(buf.len());
        self.0[..n].copy_from_slice(&buf[..n]);

        // mem::take() is not available on 1.36
        #[allow(clippy::mem_replace_with_default)]
        {
            let slice = mem::replace(&mut self.0, &mut []);
            self.0 = &mut slice[n..];
        }

        Ok(n)
    }
}

/// Yield with some small probability.
fn maybe_yield(rng: &mut fastrand::Rng, cx: &mut Context<'_>) -> Poll<()> {
    if rng.usize(..100) == 0 {
        cx.waker().wake_by_ref();
        Poll::Pending
    } else {
        Poll::Ready(())
    }
}

/// Get a random number generator.
#[cfg(feature = "std")]
#[inline]
fn rng() -> fastrand::Rng {
    fastrand::Rng::new()
}

/// Get a random number generator.
///
/// This uses a fixed seed due to the lack of a good RNG in `no_std` environments.
#[cfg(not(feature = "std"))]
#[inline]
fn rng() -> fastrand::Rng {
    // Chosen by fair roll of the dice.
    fastrand::Rng::with_seed(0x7e9b496634c97ec6)
}

/// ```
/// use piper::{Reader, Writer};
/// fn _send_sync<T: Send + Sync>() {}
/// _send_sync::<Reader>();
/// _send_sync::<Writer>();
/// ```
fn _assert_send_sync() {}

mod sync {
    #[cfg(not(feature = "portable-atomic"))]
    pub use core::sync::atomic;

    #[cfg(not(feature = "portable-atomic"))]
    pub use alloc::sync::Arc;

    #[cfg(feature = "portable-atomic")]
    pub use portable_atomic_crate as atomic;

    #[cfg(feature = "portable-atomic")]
    pub use portable_atomic_util::Arc;
}