1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
//! A bounded single-producer single-consumer pipe.
//!
//! This crate provides a ring buffer that can be asynchronously read from and written to. It is
//! created via the [`pipe`] function, which returns a pair of [`Reader`] and [`Writer`] handles.
//! They implement the [`AsyncRead`] and [`AsyncWrite`] traits, respectively.
//!
//! The handles are single-producer/single-consumer; to clarify, they cannot be cloned and need `&mut`
//! access to read or write to them. If multiple-producer/multiple-consumer handles are needed,
//! consider wrapping them in an `Arc<Mutex<...>>` or similar.
//!
//! When the sender is dropped, remaining bytes in the pipe can still be read. After that, attempts
//! to read will result in `Ok(0)`, i.e. they will always 'successfully' read 0 bytes.
//!
//! When the receiver is dropped, the pipe is closed and no more bytes and be written into it.
//! Further writes will result in `Ok(0)`, i.e. they will always 'successfully' write 0 bytes.
//!
//! # Version 0.2.0 Notes
//!
//! Previously, this crate contained other synchronization primitives, such as bounded channels, locks,
//! and event listeners. These have been split out into their own crates:
//!
//! - [`async-channel`](https://docs.rs/async-channel)
//! - [`async-dup`](https://docs.rs/async-dup)
//! - [`async-lock`](https://docs.rs/async-lock)
//! - [`async-mutex`](https://docs.rs/async-mutex)
//! - [`event-listener`](https://docs.rs/event-listener)
//!
//! # Examples
//!
//! ## Asynchronous Tasks
//!
//! Communicate between asynchronous tasks, potentially on other threads.
//!
//! ```
//! use async_channel::unbounded;
//! use async_executor::Executor;
//! use easy_parallel::Parallel;
//! use futures_lite::{future, prelude::*};
//! use std::time::Duration;
//!
//! # if cfg!(miri) { return; }
//!
//! // Create a pair of handles.
//! let (mut reader, mut writer) = piper::pipe(1024);
//!
//! // Create the executor.
//! let ex = Executor::new();
//! let (signal, shutdown) = unbounded::<()>();
//!
//! // Spawn a detached task for random data to the pipe.
//! let writer = ex.spawn(async move {
//! for _ in 0..1_000 {
//! // Generate 8 random numnbers.
//! let random = fastrand::u64(..).to_le_bytes();
//!
//! // Write them to the pipe.
//! writer.write_all(&random).await.unwrap();
//!
//! // Wait a bit.
//! async_io::Timer::after(Duration::from_millis(5)).await;
//! }
//!
//! // Drop the writer to close the pipe.
//! drop(writer);
//! });
//!
//! // Detach the task so that it runs in the background.
//! writer.detach();
//!
//! // Spawn a task for reading from the pipe.
//! let reader = ex.spawn(async move {
//! let mut buf = vec![];
//!
//! // Read all bytes from the pipe.
//! reader.read_to_end(&mut buf).await.unwrap();
//!
//! println!("Random data: {:#?}", buf);
//! });
//!
//! Parallel::new()
//! // Run four executor threads.
//! .each(0..4, |_| future::block_on(ex.run(shutdown.recv())))
//! // Run the main future on the current thread.
//! .finish(|| future::block_on(async {
//! // Wait for the reader to finish.
//! reader.await;
//!
//! // Signal the executor threads to shut down.
//! drop(signal);
//! }));
//! ```
//!
//! ## Blocking I/O
//!
//! File I/O is blocking; therefore, in `async` code, you must run it on another thread. This example
//! spawns another thread for reading a file and writing it to a pipe.
//!
//! ```no_run
//! use futures_lite::{future, prelude::*};
//! use std::fs::File;
//! use std::io::prelude::*;
//! use std::thread;
//!
//! // Create a pair of handles.
//! let (mut r, mut w) = piper::pipe(1024);
//!
//! // Spawn a thread for reading a file.
//! thread::spawn(move || {
//! let mut file = File::open("Cargo.toml").unwrap();
//!
//! // Read the file into a buffer.
//! let mut buf = [0u8; 16384];
//! future::block_on(async move {
//! loop {
//! // Read a chunk of bytes from the file.
//! // Blocking is okay here, since this is a separate thread.
//! let n = file.read(&mut buf).unwrap();
//! if n == 0 {
//! break;
//! }
//!
//! // Write the chunk to the pipe.
//! w.write_all(&buf[..n]).await.unwrap();
//! }
//!
//! // Close the pipe.
//! drop(w);
//! });
//! });
//!
//! # future::block_on(async move {
//! // Read bytes from the pipe.
//! let mut buf = vec![];
//! r.read_to_end(&mut buf).await.unwrap();
//!
//! println!("Read {} bytes", buf.len());
//! # });
//! ```
//!
//! However, the lower-level [`poll_fill`] and [`poll_drain`] methods take `impl Read` and `impl Write`
//! arguments, respectively. This allows you to skip the buffer entirely and read/write directly from
//! the file into the pipe. This approach should be preferred when possible, as it avoids an extra
//! copy.
//!
//! ```no_run
//! # use futures_lite::future;
//! # use std::fs::File;
//! # let mut file: File = unimplemented!();
//! # let mut w: piper::Writer = unimplemented!();
//! // In the `future::block_on` call above...
//! # future::block_on(async move {
//! loop {
//! let n = future::poll_fn(|cx| w.poll_fill(cx, &mut file)).await.unwrap();
//! if n == 0 {
//! break;
//! }
//! }
//! # });
//! ```
//!
//! The [`blocking`] crate is preferred in this use case, since it uses more efficient strategies for
//! thread management and pipes.
//!
//! [`poll_fill`]: struct.Writer.html#method.poll_fill
//! [`poll_drain`]: struct.Reader.html#method.poll_drain
//! [`blocking`]: https://docs.rs/blocking
#![cfg_attr(not(feature = "std"), no_std)]
#![forbid(missing_docs)]
#![doc(
html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png"
)]
extern crate alloc;
use core::convert::Infallible;
use core::mem;
use core::slice;
use core::task::{Context, Poll};
use alloc::vec::Vec;
use sync::atomic::{self, AtomicBool, AtomicUsize, Ordering};
use sync::Arc;
#[cfg(feature = "std")]
use std::{
io::{self, Read, Write},
pin::Pin,
};
use atomic_waker::AtomicWaker;
#[cfg(feature = "std")]
use futures_io::{AsyncRead, AsyncWrite};
macro_rules! ready {
($e:expr) => {{
match $e {
Poll::Ready(t) => t,
Poll::Pending => return Poll::Pending,
}
}};
}
/// Creates a bounded single-producer single-consumer pipe.
///
/// A pipe is a ring buffer of `cap` bytes that can be asynchronously read from and written to.
///
/// See the [crate-level documentation](index.html) for more details.
///
/// # Panics
///
/// This function panics if `cap` is 0 or if `cap * 2` overflows a `usize`.
#[allow(clippy::incompatible_msrv)] // false positive: https://github.com/rust-lang/rust-clippy/issues/12280
pub fn pipe(cap: usize) -> (Reader, Writer) {
assert!(cap > 0, "capacity must be positive");
assert!(cap.checked_mul(2).is_some(), "capacity is too large");
// Allocate the ring buffer.
let mut v = Vec::with_capacity(cap);
let buffer = v.as_mut_ptr();
mem::forget(v);
let inner = Arc::new(Pipe {
head: AtomicUsize::new(0),
tail: AtomicUsize::new(0),
reader: AtomicWaker::new(),
writer: AtomicWaker::new(),
closed: AtomicBool::new(false),
buffer,
cap,
});
// Use a random number generator to randomize fair yielding behavior.
let mut rng = rng();
let r = Reader {
inner: inner.clone(),
head: 0,
tail: 0,
rng: rng.fork(),
};
let w = Writer {
inner,
head: 0,
tail: 0,
zeroed_until: 0,
rng,
};
(r, w)
}
/// The reading side of a pipe.
///
/// This type is created by the [`pipe`] function. See its documentation for more details.
pub struct Reader {
/// The inner ring buffer.
inner: Arc<Pipe>,
/// The head index, moved by the reader, in the range `0..2*cap`.
///
/// This index always matches `inner.head`.
head: usize,
/// The tail index, moved by the writer, in the range `0..2*cap`.
///
/// This index is a snapshot of `index.tail` that might become stale at any point.
tail: usize,
/// Random number generator.
rng: fastrand::Rng,
}
/// The writing side of a pipe.
///
/// This type is created by the [`pipe`] function. See its documentation for more details.
pub struct Writer {
/// The inner ring buffer.
inner: Arc<Pipe>,
/// The head index, moved by the reader, in the range `0..2*cap`.
///
/// This index is a snapshot of `index.head` that might become stale at any point.
head: usize,
/// The tail index, moved by the writer, in the range `0..2*cap`.
///
/// This index always matches `inner.tail`.
tail: usize,
/// How many bytes at the beginning of the buffer have been zeroed.
///
/// The pipe allocates an uninitialized buffer, and we must be careful about passing
/// uninitialized data to user code. Zeroing the buffer right after allocation would be too
/// expensive, so we zero it in smaller chunks as the writer makes progress.
zeroed_until: usize,
/// Random number generator.
rng: fastrand::Rng,
}
/// The inner ring buffer.
///
/// Head and tail indices are in the range `0..2*cap`, even though they really map onto the
/// `0..cap` range. The distance between head and tail indices is never more than `cap`.
///
/// The reason why indices are not in the range `0..cap` is because we need to distinguish between
/// the pipe being empty and being full. If head and tail were in `0..cap`, then `head == tail`
/// could mean the pipe is either empty or full, but we don't know which!
struct Pipe {
/// The head index, moved by the reader, in the range `0..2*cap`.
head: AtomicUsize,
/// The tail index, moved by the writer, in the range `0..2*cap`.
tail: AtomicUsize,
/// A waker representing the blocked reader.
reader: AtomicWaker,
/// A waker representing the blocked writer.
writer: AtomicWaker,
/// Set to `true` if the reader or writer was dropped.
closed: AtomicBool,
/// The byte buffer.
buffer: *mut u8,
/// The buffer capacity.
cap: usize,
}
unsafe impl Sync for Pipe {}
unsafe impl Send for Pipe {}
impl Drop for Pipe {
fn drop(&mut self) {
// Deallocate the byte buffer.
unsafe {
Vec::from_raw_parts(self.buffer, 0, self.cap);
}
}
}
impl Drop for Reader {
fn drop(&mut self) {
// Dropping closes the pipe and then wakes the writer.
self.inner.closed.store(true, Ordering::SeqCst);
self.inner.writer.wake();
}
}
impl Drop for Writer {
fn drop(&mut self) {
// Dropping closes the pipe and then wakes the reader.
self.inner.closed.store(true, Ordering::SeqCst);
self.inner.reader.wake();
}
}
impl Pipe {
/// Get the length of the data in the pipe.
fn len(&self) -> usize {
let head = self.head.load(Ordering::Acquire);
let tail = self.tail.load(Ordering::Acquire);
if head <= tail {
tail - head
} else {
(2 * self.cap) - (head - tail)
}
}
}
impl Reader {
/// Gets the total length of the data in the pipe.
///
/// This method returns the number of bytes that have been written into the pipe but haven't been
/// read yet.
///
/// # Examples
///
/// ```
/// let (mut reader, mut writer) = piper::pipe(10);
/// let _ = writer.try_fill(&[0u8; 5]);
/// assert_eq!(reader.len(), 5);
/// ```
pub fn len(&self) -> usize {
self.inner.len()
}
/// Tell whether or not the pipe is empty.
///
/// This method returns `true` if the pipe is empty, and `false` otherwise.
///
/// # Examples
///
/// ```
/// let (mut reader, mut writer) = piper::pipe(10);
/// assert!(reader.is_empty());
/// let _ = writer.try_fill(&[0u8; 5]);
/// assert!(!reader.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner.len() == 0
}
/// Gets the total capacity of the pipe.
///
/// This method returns the number of bytes that the pipe can hold at a time.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// let (reader, _) = piper::pipe(10);
/// assert_eq!(reader.capacity(), 10);
/// # });
/// ```
pub fn capacity(&self) -> usize {
self.inner.cap
}
/// Tell whether or not the pipe is full.
///
/// The pipe is full if the number of bytes written into it is equal to its capacity. At this point,
/// writes will block until some data is read from the pipe.
///
/// This method returns `true` if the pipe is full, and `false` otherwise.
///
/// # Examples
///
/// ```
/// let (mut reader, mut writer) = piper::pipe(10);
/// assert!(!reader.is_full());
/// let _ = writer.try_fill(&[0u8; 10]);
/// assert!(reader.is_full());
/// let _ = reader.try_drain(&mut [0u8; 5]);
/// assert!(!reader.is_full());
/// ```
pub fn is_full(&self) -> bool {
self.inner.len() == self.inner.cap
}
/// Tell whether or not the pipe is closed.
///
/// The pipe is closed if either the reader or the writer has been dropped. At this point, attempting
/// to write into the pipe will return `Poll::Ready(Ok(0))` and attempting to read from the pipe after
/// any previously written bytes are read will return `Poll::Ready(Ok(0))`.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// let (mut reader, mut writer) = piper::pipe(10);
/// assert!(!reader.is_closed());
/// drop(writer);
/// assert!(reader.is_closed());
/// # });
/// ```
pub fn is_closed(&self) -> bool {
self.inner.closed.load(Ordering::SeqCst)
}
/// Reads bytes from this reader and writes into blocking `dest`.
///
/// This method reads directly from the pipe's internal buffer into `dest`. This avoids an extra copy,
/// but it may block the thread if `dest` blocks.
///
/// If the pipe is empty, this method returns `Poll::Pending`. If the pipe is closed, this method
/// returns `Poll::Ready(Ok(0))`. Errors in `dest` are bubbled up through `Poll::Ready(Err(e))`.
/// Otherwise, this method returns `Poll::Ready(Ok(n))` where `n` is the number of bytes written.
///
/// This method is only available when the `std` feature is enabled. For `no_std` environments,
/// consider using [`poll_drain_bytes`] instead.
///
/// [`poll_drain_bytes`]: #method.poll_drain_bytes
///
/// # Examples
///
/// ```
/// use futures_lite::{future, prelude::*};
/// # future::block_on(async {
///
/// let (mut r, mut w) = piper::pipe(1024);
///
/// // Write some data to the pipe.
/// w.write_all(b"hello world").await.unwrap();
///
/// // Try reading from the pipe.
/// let mut buf = [0; 1024];
/// let n = future::poll_fn(|cx| r.poll_drain(cx, &mut buf[..])).await.unwrap();
///
/// // The data was written to the buffer.
/// assert_eq!(&buf[..n], b"hello world");
/// # });
/// ```
#[cfg(feature = "std")]
pub fn poll_drain(
&mut self,
cx: &mut Context<'_>,
dest: impl Write,
) -> Poll<io::Result<usize>> {
self.drain_inner(Some(cx), dest)
}
/// Reads bytes from this reader.
///
/// Rather than taking a `Write` trait object, this method takes a slice of bytes to write into.
/// Because of this, it is infallible and can be used in `no_std` environments.
///
/// The same conditions that apply to [`poll_drain`] apply to this method.
///
/// [`poll_drain`]: #method.poll_drain
///
/// # Examples
///
/// ```
/// use futures_lite::{future, prelude::*};
/// # future::block_on(async {
/// let (mut r, mut w) = piper::pipe(1024);
///
/// // Write some data to the pipe.
/// w.write_all(b"hello world").await.unwrap();
///
/// // Try reading from the pipe.
/// let mut buf = [0; 1024];
/// let n = future::poll_fn(|cx| r.poll_drain_bytes(cx, &mut buf[..])).await;
///
/// // The data was written to the buffer.
/// assert_eq!(&buf[..n], b"hello world");
/// # });
/// ```
pub fn poll_drain_bytes(&mut self, cx: &mut Context<'_>, dest: &mut [u8]) -> Poll<usize> {
match self.drain_inner(Some(cx), WriteBytes(dest)) {
Poll::Ready(Ok(n)) => Poll::Ready(n),
Poll::Ready(Err(e)) => match e {},
Poll::Pending => Poll::Pending,
}
}
/// Tries to read bytes from this reader.
///
/// Returns the total number of bytes that were read from this reader.
///
/// # Examples
///
/// ```
/// let (mut r, mut w) = piper::pipe(1024);
///
/// // `try_drain()` returns 0 off the bat.
/// let mut buf = [0; 10];
/// assert_eq!(r.try_drain(&mut buf), 0);
///
/// // After a write it returns the data.
/// w.try_fill(&[0, 1, 2, 3, 4]);
/// assert_eq!(r.try_drain(&mut buf), 5);
/// assert_eq!(&buf[..5], &[0, 1, 2, 3, 4]);
/// ```
pub fn try_drain(&mut self, dest: &mut [u8]) -> usize {
match self.drain_inner(None, WriteBytes(dest)) {
Poll::Ready(Ok(n)) => n,
Poll::Ready(Err(e)) => match e {},
Poll::Pending => 0,
}
}
/// Reads bytes from this reader and writes into blocking `dest`.
#[inline]
fn drain_inner<W: WriteLike>(
&mut self,
mut cx: Option<&mut Context<'_>>,
mut dest: W,
) -> Poll<Result<usize, W::Error>> {
let cap = self.inner.cap;
// Calculates the distance between two indices.
let distance = |a: usize, b: usize| {
if a <= b {
b - a
} else {
2 * cap - (a - b)
}
};
// If the pipe appears to be empty...
if distance(self.head, self.tail) == 0 {
// Reload the tail in case it's become stale.
self.tail = self.inner.tail.load(Ordering::Acquire);
// If the pipe is now really empty...
if distance(self.head, self.tail) == 0 {
// Register the waker.
if let Some(cx) = cx.as_mut() {
self.inner.reader.register(cx.waker());
}
atomic::fence(Ordering::SeqCst);
// Reload the tail after registering the waker.
self.tail = self.inner.tail.load(Ordering::Acquire);
// If the pipe is still empty...
if distance(self.head, self.tail) == 0 {
// Check whether the pipe is closed or just empty.
if self.inner.closed.load(Ordering::Relaxed) {
return Poll::Ready(Ok(0));
} else {
return Poll::Pending;
}
}
}
}
// The pipe is not empty so remove the waker.
self.inner.reader.take();
// Yield with some small probability - this improves fairness.
if let Some(cx) = cx {
ready!(maybe_yield(&mut self.rng, cx));
}
// Given an index in `0..2*cap`, returns the real index in `0..cap`.
let real_index = |i: usize| {
if i < cap {
i
} else {
i - cap
}
};
// Number of bytes read so far.
let mut count = 0;
loop {
// Calculate how many bytes to read in this iteration.
let n = (128 * 1024) // Not too many bytes in one go - better to wake the writer soon!
.min(distance(self.head, self.tail)) // No more than bytes in the pipe.
.min(cap - real_index(self.head)); // Don't go past the buffer boundary.
// Create a slice of data in the pipe buffer.
let pipe_slice =
unsafe { slice::from_raw_parts(self.inner.buffer.add(real_index(self.head)), n) };
// Copy bytes from the pipe buffer into `dest`.
let n = dest.write(pipe_slice)?;
count += n;
// If pipe is empty or `dest` is full, return.
if n == 0 {
return Poll::Ready(Ok(count));
}
// Move the head forward.
if self.head + n < 2 * cap {
self.head += n;
} else {
self.head = 0;
}
// Store the current head index.
self.inner.head.store(self.head, Ordering::Release);
// Wake the writer because the pipe is not full.
self.inner.writer.wake();
}
}
}
#[cfg(feature = "std")]
impl AsyncRead for Reader {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
self.poll_drain_bytes(cx, buf).map(Ok)
}
}
impl Writer {
/// Gets the total length of the data in the pipe.
///
/// This method returns the number of bytes that have been written into the pipe but haven't been
/// read yet.
///
/// # Examples
///
/// ```
/// let (_reader, mut writer) = piper::pipe(10);
/// let _ = writer.try_fill(&[0u8; 5]);
/// assert_eq!(writer.len(), 5);
/// ```
pub fn len(&self) -> usize {
self.inner.len()
}
/// Tell whether or not the pipe is empty.
///
/// This method returns `true` if the pipe is empty, and `false` otherwise.
///
/// # Examples
///
/// ```
/// let (_reader, mut writer) = piper::pipe(10);
/// assert!(writer.is_empty());
/// let _ = writer.try_fill(&[0u8; 5]);
/// assert!(!writer.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner.len() == 0
}
/// Gets the total capacity of the pipe.
///
/// This method returns the number of bytes that the pipe can hold at a time.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// let (_, writer) = piper::pipe(10);
/// assert_eq!(writer.capacity(), 10);
/// # });
/// ```
pub fn capacity(&self) -> usize {
self.inner.cap
}
/// Tell whether or not the pipe is full.
///
/// The pipe is full if the number of bytes written into it is equal to its capacity. At this point,
/// writes will block until some data is read from the pipe.
///
/// This method returns `true` if the pipe is full, and `false` otherwise.
///
/// # Examples
///
/// ```
/// let (mut reader, mut writer) = piper::pipe(10);
/// assert!(!writer.is_full());
/// let _ = writer.try_fill(&[0u8; 10]);
/// assert!(writer.is_full());
/// let _ = reader.try_drain(&mut [0u8; 5]);
/// assert!(!writer.is_full());
/// ```
pub fn is_full(&self) -> bool {
self.inner.len() == self.inner.cap
}
/// Tell whether or not the pipe is closed.
///
/// The pipe is closed if either the reader or the writer has been dropped. At this point, attempting
/// to write into the pipe will return `Poll::Ready(Ok(0))` and attempting to read from the pipe after
/// any previously written bytes are read will return `Poll::Ready(Ok(0))`.
///
/// # Examples
///
/// ```
/// # futures_lite::future::block_on(async {
/// let (reader, writer) = piper::pipe(10);
/// assert!(!writer.is_closed());
/// drop(reader);
/// assert!(writer.is_closed());
/// # });
/// ```
pub fn is_closed(&self) -> bool {
self.inner.closed.load(Ordering::SeqCst)
}
/// Reads bytes from blocking `src` and writes into this writer.
///
/// This method writes directly from `src` into the pipe's internal buffer. This avoids an extra copy,
/// but it may block the thread if `src` blocks.
///
/// If the pipe is full, this method returns `Poll::Pending`. If the pipe is closed, this method
/// returns `Poll::Ready(Ok(0))`. Errors in `src` are bubbled up through `Poll::Ready(Err(e))`.
/// Otherwise, this method returns `Poll::Ready(Ok(n))` where `n` is the number of bytes read.
///
/// This method is only available when the `std` feature is enabled. For `no_std` environments,
/// consider using [`poll_fill_bytes`] instead.
///
/// [`poll_fill_bytes`]: #method.poll_fill_bytes
///
/// # Examples
///
/// ```
/// use futures_lite::{future, prelude::*};
/// # future::block_on(async {
///
/// // Create a pipe.
/// let (mut reader, mut writer) = piper::pipe(1024);
///
/// // Fill the pipe with some bytes.
/// let data = b"hello world";
/// let n = future::poll_fn(|cx| writer.poll_fill(cx, &data[..])).await.unwrap();
/// assert_eq!(n, data.len());
///
/// // Read the bytes back.
/// let mut buf = [0; 1024];
/// reader.read_exact(&mut buf[..data.len()]).await.unwrap();
/// assert_eq!(&buf[..data.len()], data);
/// # });
/// ```
#[cfg(feature = "std")]
pub fn poll_fill(&mut self, cx: &mut Context<'_>, src: impl Read) -> Poll<io::Result<usize>> {
self.fill_inner(Some(cx), src)
}
/// Writes bytes into this writer.
///
/// Rather than taking a `Read` trait object, this method takes a slice of bytes to read from.
/// Because of this, it is infallible and can be used in `no_std` environments.
///
/// The same conditions that apply to [`poll_fill`] apply to this method.
///
/// [`poll_fill`]: #method.poll_fill
///
/// # Examples
///
/// ```
/// use futures_lite::{future, prelude::*};
/// # future::block_on(async {
///
/// // Create a pipe.
/// let (mut reader, mut writer) = piper::pipe(1024);
///
/// // Fill the pipe with some bytes.
/// let data = b"hello world";
/// let n = future::poll_fn(|cx| writer.poll_fill_bytes(cx, &data[..])).await;
/// assert_eq!(n, data.len());
///
/// // Read the bytes back.
/// let mut buf = [0; 1024];
/// reader.read_exact(&mut buf[..data.len()]).await.unwrap();
/// assert_eq!(&buf[..data.len()], data);
/// # });
/// ```
pub fn poll_fill_bytes(&mut self, cx: &mut Context<'_>, bytes: &[u8]) -> Poll<usize> {
match self.fill_inner(Some(cx), ReadBytes(bytes)) {
Poll::Ready(Ok(n)) => Poll::Ready(n),
Poll::Ready(Err(e)) => match e {},
Poll::Pending => Poll::Pending,
}
}
/// Tries to write bytes to this writer.
///
/// Returns the total number of bytes that were read from this reader.
///
/// # Examples
///
/// ```
/// let (mut r, mut w) = piper::pipe(1024);
///
/// let mut buf = [0; 10];
/// assert_eq!(w.try_fill(&[0, 1, 2, 3, 4]), 5);
/// assert_eq!(r.try_drain(&mut buf), 5);
/// assert_eq!(&buf[..5], &[0, 1, 2, 3, 4]);
/// ```
pub fn try_fill(&mut self, dest: &[u8]) -> usize {
match self.fill_inner(None, ReadBytes(dest)) {
Poll::Ready(Ok(n)) => n,
Poll::Ready(Err(e)) => match e {},
Poll::Pending => 0,
}
}
/// Reads bytes from blocking `src` and writes into this writer.
#[inline]
fn fill_inner<R: ReadLike>(
&mut self,
mut cx: Option<&mut Context<'_>>,
mut src: R,
) -> Poll<Result<usize, R::Error>> {
// Just a quick check if the pipe is closed, which is why a relaxed load is okay.
if self.inner.closed.load(Ordering::Relaxed) {
return Poll::Ready(Ok(0));
}
// Calculates the distance between two indices.
let cap = self.inner.cap;
let distance = |a: usize, b: usize| {
if a <= b {
b - a
} else {
2 * cap - (a - b)
}
};
// If the pipe appears to be full...
if distance(self.head, self.tail) == cap {
// Reload the head in case it's become stale.
self.head = self.inner.head.load(Ordering::Acquire);
// If the pipe is now really empty...
if distance(self.head, self.tail) == cap {
// Register the waker.
if let Some(cx) = cx.as_mut() {
self.inner.writer.register(cx.waker());
}
atomic::fence(Ordering::SeqCst);
// Reload the head after registering the waker.
self.head = self.inner.head.load(Ordering::Acquire);
// If the pipe is still full...
if distance(self.head, self.tail) == cap {
// Check whether the pipe is closed or just full.
if self.inner.closed.load(Ordering::Relaxed) {
return Poll::Ready(Ok(0));
} else {
return Poll::Pending;
}
}
}
}
// The pipe is not full so remove the waker.
self.inner.writer.take();
// Yield with some small probability - this improves fairness.
if let Some(cx) = cx {
ready!(maybe_yield(&mut self.rng, cx));
}
// Given an index in `0..2*cap`, returns the real index in `0..cap`.
let real_index = |i: usize| {
if i < cap {
i
} else {
i - cap
}
};
// Number of bytes written so far.
let mut count = 0;
loop {
// Calculate how many bytes to write in this iteration.
let n = (128 * 1024) // Not too many bytes in one go - better to wake the reader soon!
.min(self.zeroed_until * 2 + 4096) // Don't zero too many bytes when starting.
.min(cap - distance(self.head, self.tail)) // No more than space in the pipe.
.min(cap - real_index(self.tail)); // Don't go past the buffer boundary.
// Create a slice of available space in the pipe buffer.
let pipe_slice_mut = unsafe {
let from = real_index(self.tail);
let to = from + n;
// Make sure all bytes in the slice are initialized.
if self.zeroed_until < to {
self.inner
.buffer
.add(self.zeroed_until)
.write_bytes(0u8, to - self.zeroed_until);
self.zeroed_until = to;
}
slice::from_raw_parts_mut(self.inner.buffer.add(from), n)
};
// Copy bytes from `src` into the piper buffer.
let n = src.read(pipe_slice_mut)?;
count += n;
// If the pipe is full or closed, or `src` is empty, return.
if n == 0 || self.inner.closed.load(Ordering::Relaxed) {
return Poll::Ready(Ok(count));
}
// Move the tail forward.
if self.tail + n < 2 * cap {
self.tail += n;
} else {
self.tail = 0;
}
// Store the current tail index.
self.inner.tail.store(self.tail, Ordering::Release);
// Wake the reader because the pipe is not empty.
self.inner.reader.wake();
}
}
}
#[cfg(feature = "std")]
impl AsyncWrite for Writer {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.poll_fill_bytes(cx, buf).map(Ok)
}
fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
// Nothing to flush.
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
// Set the closed flag.
self.inner.closed.store(true, Ordering::Release);
// Wake up any tasks that may be waiting on the pipe.
self.inner.reader.wake();
self.inner.writer.wake();
// The pipe is now closed.
Poll::Ready(Ok(()))
}
}
/// A trait for reading bytes into a pipe.
trait ReadLike {
/// The error type.
type Error;
/// Reads bytes into the given buffer.
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error>;
}
#[cfg(feature = "std")]
impl<R: Read> ReadLike for R {
type Error = io::Error;
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
Read::read(self, buf)
}
}
/// Implements `no_std` reading around a byte slice.
struct ReadBytes<'a>(&'a [u8]);
impl ReadLike for ReadBytes<'_> {
type Error = Infallible;
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
let n = self.0.len().min(buf.len());
buf[..n].copy_from_slice(&self.0[..n]);
self.0 = &self.0[n..];
Ok(n)
}
}
/// A trait for writing bytes from a pipe.
trait WriteLike {
/// The error type.
type Error;
/// Writes bytes from the given buffer.
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error>;
}
#[cfg(feature = "std")]
impl<W: Write> WriteLike for W {
type Error = io::Error;
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Write::write(self, buf)
}
}
/// Implements `no_std` writing around a byte slice.
struct WriteBytes<'a>(&'a mut [u8]);
impl WriteLike for WriteBytes<'_> {
type Error = Infallible;
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
let n = self.0.len().min(buf.len());
self.0[..n].copy_from_slice(&buf[..n]);
// mem::take() is not available on 1.36
#[allow(clippy::mem_replace_with_default)]
{
let slice = mem::replace(&mut self.0, &mut []);
self.0 = &mut slice[n..];
}
Ok(n)
}
}
/// Yield with some small probability.
fn maybe_yield(rng: &mut fastrand::Rng, cx: &mut Context<'_>) -> Poll<()> {
if rng.usize(..100) == 0 {
cx.waker().wake_by_ref();
Poll::Pending
} else {
Poll::Ready(())
}
}
/// Get a random number generator.
#[cfg(feature = "std")]
#[inline]
fn rng() -> fastrand::Rng {
fastrand::Rng::new()
}
/// Get a random number generator.
///
/// This uses a fixed seed due to the lack of a good RNG in `no_std` environments.
#[cfg(not(feature = "std"))]
#[inline]
fn rng() -> fastrand::Rng {
// Chosen by fair roll of the dice.
fastrand::Rng::with_seed(0x7e9b496634c97ec6)
}
/// ```
/// use piper::{Reader, Writer};
/// fn _send_sync<T: Send + Sync>() {}
/// _send_sync::<Reader>();
/// _send_sync::<Writer>();
/// ```
fn _assert_send_sync() {}
mod sync {
#[cfg(not(feature = "portable-atomic"))]
pub use core::sync::atomic;
#[cfg(not(feature = "portable-atomic"))]
pub use alloc::sync::Arc;
#[cfg(feature = "portable-atomic")]
pub use portable_atomic_crate as atomic;
#[cfg(feature = "portable-atomic")]
pub use portable_atomic_util::Arc;
}