async_process/reaper/wait.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
//! A version of the reaper that waits on some polling primitive.
//!
//! This uses:
//!
//! - pidfd on Linux
//! - Waitable objects on Windows
use async_channel::{Receiver, Sender};
use async_task::Runnable;
use futures_lite::future;
use std::io;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Mutex;
use std::task::{Context, Poll};
/// The zombie process reaper.
pub(crate) struct Reaper {
/// The channel for sending new runnables.
sender: Sender<Runnable>,
/// The channel for receiving new runnables.
recv: Receiver<Runnable>,
/// Number of zombie processes.
zombies: AtomicUsize,
}
impl Reaper {
/// Create a new reaper.
pub(crate) fn new() -> Self {
let (sender, recv) = async_channel::unbounded();
Self {
sender,
recv,
zombies: AtomicUsize::new(0),
}
}
/// Reap zombie processes forever.
pub(crate) async fn reap(&'static self) -> ! {
loop {
// Fetch the next task.
let task = match self.recv.recv().await {
Ok(task) => task,
Err(_) => panic!("sender should never be closed"),
};
// Poll the task.
task.run();
}
}
/// Register a child into this reaper.
pub(crate) fn register(&'static self, child: std::process::Child) -> io::Result<ChildGuard> {
Ok(ChildGuard {
inner: Some(WaitableChild::new(child)?),
})
}
/// Wait for a child to complete.
pub(crate) async fn status(
&'static self,
child: &Mutex<crate::ChildGuard>,
) -> io::Result<std::process::ExitStatus> {
future::poll_fn(|cx| {
// Lock the child.
let mut child = child.lock().unwrap();
// Get the inner child value.
let inner = match &mut child.inner {
super::ChildGuard::Wait(inner) => inner,
#[cfg(not(windows))]
_ => unreachable!(),
};
// Poll for the next value.
inner.inner.as_mut().unwrap().poll_wait(cx)
})
.await
}
/// Do we have any registered zombie processes?
pub(crate) fn has_zombies(&'static self) -> bool {
self.zombies.load(Ordering::SeqCst) > 0
}
}
/// The wrapper around the child.
pub(crate) struct ChildGuard {
inner: Option<WaitableChild>,
}
impl ChildGuard {
/// Get a mutable reference to the inner child.
pub(crate) fn get_mut(&mut self) -> &mut std::process::Child {
self.inner.as_mut().unwrap().get_mut()
}
/// Begin the reaping process for this child.
pub(crate) fn reap(&mut self, reaper: &'static Reaper) {
// Create a future for polling this child.
let future = {
let mut inner = self.inner.take().unwrap();
async move {
// Increment the zombie count.
reaper.zombies.fetch_add(1, Ordering::Relaxed);
// Decrement the zombie count once we are done.
let _guard = crate::CallOnDrop(|| {
reaper.zombies.fetch_sub(1, Ordering::SeqCst);
});
// Wait on this child forever.
let result = future::poll_fn(|cx| inner.poll_wait(cx)).await;
if let Err(e) = result {
tracing::error!("error while polling zombie process: {}", e);
}
}
};
// Create a function for scheduling this future.
let schedule = move |runnable| {
reaper.sender.try_send(runnable).ok();
};
// Spawn the task and run it forever.
let (runnable, task) = async_task::spawn(future, schedule);
task.detach();
runnable.schedule();
}
}
cfg_if::cfg_if! {
if #[cfg(target_os = "linux")] {
use async_io::Async;
use rustix::process;
use std::os::unix::io::OwnedFd;
/// Waitable version of `std::process::Child`
struct WaitableChild {
child: std::process::Child,
handle: Async<OwnedFd>,
}
impl WaitableChild {
fn new(child: std::process::Child) -> io::Result<Self> {
let pidfd = process::pidfd_open(
process::Pid::from_child(&child),
process::PidfdFlags::empty()
)?;
Ok(Self {
child,
handle: Async::new(pidfd)?
})
}
fn get_mut(&mut self) -> &mut std::process::Child {
&mut self.child
}
fn poll_wait(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<std::process::ExitStatus>> {
loop {
if let Some(status) = self.child.try_wait()? {
return Poll::Ready(Ok(status));
}
// Wait for us to become readable.
futures_lite::ready!(self.handle.poll_readable(cx))?;
}
}
}
/// Tell if we are able to use this backend.
pub(crate) fn available() -> bool {
// Create a Pidfd for the current process and see if it works.
let result = process::pidfd_open(
process::getpid(),
process::PidfdFlags::empty()
);
// Tell if it was okay or not.
result.is_ok()
}
} else if #[cfg(windows)] {
use async_io::os::windows::Waitable;
/// Waitable version of `std::process::Child`.
struct WaitableChild {
inner: Waitable<std::process::Child>,
}
impl WaitableChild {
fn new(child: std::process::Child) -> io::Result<Self> {
Ok(Self {
inner: Waitable::new(child)?
})
}
fn get_mut(&mut self) -> &mut std::process::Child {
// SAFETY: We never move the child out.
unsafe {
self.inner.get_mut()
}
}
fn poll_wait(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<std::process::ExitStatus>> {
loop {
if let Some(status) = self.get_mut().try_wait()? {
return Poll::Ready(Ok(status));
}
// Wait for us to become readable.
futures_lite::ready!(self.inner.poll_ready(cx))?;
}
}
}
/// Tell if we are able to use this backend.
pub(crate) fn available() -> bool {
true
}
}
}