async_process/reaper/signal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
//! A version of the reaper that waits for a signal to check for process progress.
use async_lock::{Mutex as AsyncMutex, MutexGuard as AsyncMutexGuard};
use async_signal::{Signal, Signals};
use event_listener::Event;
use futures_lite::{future, prelude::*};
use std::io;
use std::mem;
use std::sync::Mutex;
pub(crate) type Lock = AsyncMutexGuard<'static, ()>;
/// The zombie process reaper.
pub(crate) struct Reaper {
/// An event delivered every time the SIGCHLD signal occurs.
sigchld: Event,
/// The list of zombie processes.
zombies: Mutex<Vec<std::process::Child>>,
/// The pipe that delivers signal notifications.
pipe: Pipe,
/// Locking this mutex indicates that we are polling the SIGCHLD event.
driver_guard: AsyncMutex<()>,
}
impl Reaper {
/// Create a new reaper.
pub(crate) fn new() -> Self {
Reaper {
sigchld: Event::new(),
zombies: Mutex::new(Vec::new()),
pipe: Pipe::new().expect("cannot create SIGCHLD pipe"),
driver_guard: AsyncMutex::new(()),
}
}
/// Lock the driver thread.
pub(crate) async fn lock(&self) -> AsyncMutexGuard<'_, ()> {
self.driver_guard.lock().await
}
/// Reap zombie processes forever.
pub(crate) async fn reap(&'static self, _driver_guard: async_lock::MutexGuard<'_, ()>) -> ! {
loop {
// Wait for the next SIGCHLD signal.
self.pipe.wait().await;
// Notify all listeners waiting on the SIGCHLD event.
self.sigchld.notify(usize::MAX);
// Reap zombie processes, but make sure we don't hold onto the lock for too long!
let mut zombies = mem::take(&mut *self.zombies.lock().unwrap());
let mut i = 0;
'reap_zombies: loop {
for _ in 0..50 {
if i >= zombies.len() {
break 'reap_zombies;
}
if let Ok(None) = zombies[i].try_wait() {
i += 1;
} else {
zombies.swap_remove(i);
}
}
// Be a good citizen; yield if there are a lot of processes.
//
// After we yield, check if there are more zombie processes.
future::yield_now().await;
zombies.append(&mut self.zombies.lock().unwrap());
}
// Put zombie processes back.
self.zombies.lock().unwrap().append(&mut zombies);
}
}
/// Register a process with this reaper.
pub(crate) fn register(&'static self, child: std::process::Child) -> io::Result<ChildGuard> {
self.pipe.register(&child)?;
Ok(ChildGuard { inner: Some(child) })
}
/// Wait for an event to occur for a child process.
pub(crate) async fn status(
&'static self,
child: &Mutex<crate::ChildGuard>,
) -> io::Result<std::process::ExitStatus> {
loop {
// Wait on the child process.
if let Some(status) = child.lock().unwrap().get_mut().try_wait()? {
return Ok(status);
}
// Start listening.
event_listener::listener!(self.sigchld => listener);
// Try again.
if let Some(status) = child.lock().unwrap().get_mut().try_wait()? {
return Ok(status);
}
// Wait on the listener.
listener.await;
}
}
/// Do we have any registered zombie processes?
pub(crate) fn has_zombies(&'static self) -> bool {
!self
.zombies
.lock()
.unwrap_or_else(|x| x.into_inner())
.is_empty()
}
}
/// The wrapper around the child.
pub(crate) struct ChildGuard {
inner: Option<std::process::Child>,
}
impl ChildGuard {
/// Get a mutable reference to the inner child.
pub(crate) fn get_mut(&mut self) -> &mut std::process::Child {
self.inner.as_mut().unwrap()
}
/// Begin the reaping process for this child.
pub(crate) fn reap(&mut self, reaper: &'static Reaper) {
if let Ok(None) = self.get_mut().try_wait() {
reaper
.zombies
.lock()
.unwrap()
.push(self.inner.take().unwrap());
}
}
}
/// Waits for the next SIGCHLD signal.
struct Pipe {
/// The iterator over SIGCHLD signals.
signals: Signals,
}
impl Pipe {
/// Creates a new pipe.
fn new() -> io::Result<Pipe> {
Ok(Pipe {
signals: Signals::new(Some(Signal::Child))?,
})
}
/// Waits for the next SIGCHLD signal.
async fn wait(&self) {
(&self.signals).next().await;
}
/// Register a process object into this pipe.
fn register(&self, _child: &std::process::Child) -> io::Result<()> {
Ok(())
}
}