Continuous Integration (CI)

The Wasmtime and Cranelift projects heavily rely on Continuous Integration (CI) to ensure everything keeps working and keep the final end state of the code at consistently high quality. The CI setup for this repository is relatively involved and extensive, and so it's worth covering here how it's organized and what's expected of contributors.

All CI currently happens on GitHub Actions and is configured in the .github directory of the repository.

PRs and CI

Currently on sample of the full CI test suite is run on every Pull Request. CI on PRs is intended to be relatively quick and catch the majority of mistakes and errors. By default the test suite is run on x86_64 Linux but this may change depending on what files the PR is modifying. The intention is to run "mostly relevant" CI on a PR by default.

PR authors are expected to fix CI failures in their PR, unless the CI failure is systemic and unrelated to the PR. In that case other maintainers should be alerted to ensure that the problem can be addressed. Some reviewers may also wait to perform a review until CI is green on the PR as otherwise it may indicate changes are needed.

The Wasmtime repository uses GitHub's Merge Queue feature to merge PRs which. Entry in to the merge queue requires green CI on the PR beforehand. Maintainers who have approved a PR will flag it for entry into the merge queue, and the PR will automatically enter the merge queue once CI is green.

When entering the merge queue a PR will have the full test suite executed which may include tests that weren't previously run on the PR. This may surface new failures, and contributors are expected to fix these failures as well.

To force PRs to execute the full test suite, which takes longer than the default test suite for PRs, then contributors can place the string "prtest:full" somewhere in any commit of the PR. From that point on the PR will automatically run the full test suite as-if it were in the merge queue. Note that when going through the merge queue this will rerun tests.

Tests run on CI

While this may not be fully exhaustive, the general idea of all the checks we run on CI looks like this:

  • Code formatting - we run cargo fmt -- --check on CI to ensure that all code in the repository is formatted with rustfmt. All PRs are expected to be formatted with the latest stable version of rustfmt.

  • Book documentation tests - code snippets (Rust ones at least) in the book documentation (the docs folder) are tested on CI to ensure they are working.

  • Crate tests - the moral equivalent of cargo test --all and cargo test --all --release is executed on CI. This means that all workspace crates have their entire test suite run, documentation tests and all, in both debug and release mode. Additionally we execute all crate tests on macOS, Windows, and Linux, to ensure that everything works on all the platforms.

  • Fuzz regression tests - we take a random sampling of the fuzz corpus and run it through the fuzzers. This is mostly intended to be a pretty quick regression test and testing the fuzzers still build, most of our fuzzing happens on oss-fuzz. Found issues are recorded in the oss-fuzz bug tracker

While we do run more tests here and there, this is the general shape of what you can be expected to get tested on CI for all commits and all PRs. You can of course always feel free to expand our CI coverage by editing the CI files themselves, we always like to run more tests!

Artifacts produced on CI

Our CI system is also responsible for producing all binary releases and documentation of Wasmtime and Cranelift. Currently this consists of:

  • Tarballs of the wasmtime CLI - produced for macOS, Windows, and Linux we try to make these "binary compatible" wherever possible, for example producing the Linux build in a really old CentOS container to have a very low glibc requirement.

  • Tarballs of the Wasmtime C API - produced for the same set of platforms as the CLI above.

  • Book and API documentation - the book is rendered with mdbook and we also build all documentation with cargo doc.

  • A source code tarball which is entirely self-contained. This source tarball has all dependencies vendored so the network is not needed to build it.

  • WebAssembly adapters for the component model to translate wasi_snapshot_preview1 to WASI Preview 2.

Artifacts are produced as part of the full CI suite. This means that artifacts are not produced on a PR by default but can be requested via "prtest:full". All runs through the merge queue though, which means all merges to main, will produce a full suite of artifacts. The latest artifacts are available through Wasmtime's dev release and downloads are also available for recent CI runs through the CI page in GitHub Actions.